본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4
최신순
조회순
바이오경제를 이끌어가는 대사공학 30년 역사와 미래
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 지난 30년간 대사공학이 발전해온 역사를 정리해, 대사공학이 어떻게 지속 가능한 발전에 기여할 수 있는 분석한 결과를 정리하여 ‘지속 가능성과 건강을 위한 대사공학’ 논문으로 발표했다고 25일 밝혔다. 이번 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 리뷰 저널인 `생명공학 동향(Trends in Biotechnology)'의 40주년 특집호 온라인판에 게재됐다. ※ 논문명 : Metabolic engineering for sustainability and health ※ 저자 정보 : 김기배(한국과학기술원, 공동 제1 저자), 최소영(한국과학기술원, 공동 제1 저자), 조인진(한국과학기술원, 공동 제1 저자), 안다희(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 대사공학은 1990년대 초반부터 본격적으로 연구되어 지난 30년간 괄목할 만한 발전을 이뤘다. 대사공학은 산업, 의료, 농업 및 환경 분야를 포함한 대부분의 생명공학 분야에서 적용돼왔으며, 특히 미생물 공학에 중점을 두고 연구가 진행됐다. 다양한 발효 식품과 알코올음료 생산 등, 미생물을 사용한 물질 생산은 오랜 역사가 있다. 미생물은 동식물에 비해 빠르게 자랄 수 있어 실험에 드는 시간과 비용이 적게 든다. 또한 유전자 변형 생물(Genetically Modified Organism; GMO) 관련한 윤리 및 안정성 문제에서 동식물과 비교해 미생물의 유전공학은 상대적으로 자유로워 미생물에 관한 대사공학 연구가 광범위하게 시행돼왔다. 지난 수십 년간 대사공학은 유용한 화학물질을 효율적으로 생산하고, 분해가 어려운 오염 물질을 분해할 수 있는 미생물 균주를 성공적으로 개발하는 등, 지속 가능한 발전을 위한 핵심적인 기술로서의 면모를 보여왔다. 특히, 현재까지 대사공학을 통해 개발한 미생물은 재생 가능한 바이오매스로부터 바이오 연료, 바이오 플라스틱, 산업용 대량 화학물질, 화장품 성분 및 의약품까지 수백 가지의 화학물질이 생산을 가능케 했다. 또한, 대사공학은 미생물과 곤충을 포함한 동식물의 자연적 정화 과정에서 영감을 얻어 미생물 기반의 다양한 생물학적 정화 방법을 개발하기 위해 사용돼왔다. 오염 물질과 독성 화학물질의 분해 경로를 조작함으로써 유출된 기름, 폐플라스틱, 살충제, 폐기된 항생제와 같은 물질을 더 높은 효율로 분해할 수 있도록 미생물을 개량할 수 있고, 이는 환경 보존을 위한 연구의 초석으로서 대사공학이 인류 건강에 기여하는 중요 예시다. 이처럼 대사공학은 유엔이 발표한 지속가능발전목표(Sustainable Development Goals; SDG) 달성에 다방면으로 기여하고 있다. 연구팀은 이번 연구에서 지난 30년간 대사 공학이 발전하며 어떻게 바이오 기반 화학물질의 지속 가능한 생산, 인류 건강 및 환경 문제까지 기여했는지에 대한 광범위한 개요를 제공했다. 특히 이상엽 특훈교수는 대사공학의 태동기부터 연구를 수행해 왔으며 2000년대 들어서 두드러진 합성생물학의 발전과도 함께해 왔다. 연구팀은 이번 논문을 통해 대사공학의 출현부터 인공지능을 활용한 최신 기술의 도입까지, 지난 수십 년 동안 어떻게 사회적, 산업적, 기술적 요구를 해결하기 위해 어떻게 발전해왔는지 정리하고, 최근 대사공학 연구가 어떻게 산업용 대량 화학물질 생산, 바이오 연료 생산, 천연물 생산, 생물학적 정화 분야에 기여하고 있는지 논의했다. 나아가 건강 및 환경 문제의 해결과 지속 가능한 바이오 기반의 화학산업을 정착시키기 위해 극복해야 할 대사공학의 문제점을 함께 제시했다. 공동 제1 저자인 생명화학공학과 김기배 박사과정생은 “기존의 석유화학 공정 기반의 화학물질 생산으로 인한 기후 위기와 화석 연료 고갈 문제를 고려했을 때 대사공학을 이용한 화학물질의 지속 가능한 생산 연구는 더욱 중요해지고 있다”라고 말했으며, 이상엽 특훈교수는 “이번 연구에서 대사공학의 역사를 돌이켜봄으로써 대사공학의 지속가능발전목표를 달성하기 위한 기여를 조명했으며, 우리 사회가 직면한 기후 위기, 환경 오염, 헬스케어, 식량 및 에너지 부족 문제에 대한 해결책으로서 대사공학이 점점 더 중요한 역할을 할 것”이라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제, 바이오·의료기술개발사업의 맞춤형 세포공장 기반 유해선충제어 바이오소재 기술 개발 과제, 그리고 산업통상자원부가 지원하는 e바이오리파이너리 직접공기포집 C1전환 합성생물학의 통합 과제의 지원을 받아 수행됐다.
2023.01.25
조회수 508
KAIST-전주시-전북대, '2022 세계 바이오 혁신 포럼' 개최
우리 대학이 지난 6일부터 3일간 2022 세계 바이오 혁신 포럼(World Bio Innovation Forum, 이하 WBIF)을 개최했다. WBIF는 우리 대학 대외협력 자문역을 맡고 있는 채수찬 교수가 대표로 있는 비영리단체로 KAIST 바이오혁신경영전문대학원과 전주시, 전북대학교 지역혁신센터와 함께 세 번째 글로벌 포럼을 진행했다. 디지털 치료제와 세계 바이오 헬스 핫이슈인 줄기세포 치료제 및 오가노이드는 물론 비교적 미개척 분야인 반려동물용 의약품 및 의료기기를 주제로 선정해 기존에 개최되어온 바이오헬스 포럼과의 차별점을 확보했다. 포럼 첫날에는 줄기세포 치료와 장기유사체(Organoids)를 주제로 하버드 의대 김광수 교수와 김진 연구원, 최동호 한양대 의대 교수, 샤힌 라피(Shahin Rafii) 웨일 코넬 대학 교수가 발표했다. 기업에서는 오가노이드사이언스(ONGANOIDSCIENCES)의 이경진 CTO가 장기유사체(Organoids) 활용 방안 등에 대해 심도 있는 정보를 제공했다. 김광수 교수는 현재 하버드 의대 맥린병원 분자신경생물학실험실 소장으로 재직중으로 지난 2020년에 맞춤형 줄기세포로 파킨슨병 임상 치료를 세계 최초로 성공한 전문가다. 포럼 둘째 날에는 반려동물 의약품을 주제로 전북대 수의대 박철 교수가 좌장을 맡았다. 스탠퍼드에서 생명공학 박사학위를 받고 반려견 맞춤형 암 치료제 개발기업 임프리메드(ImpriMed)를 창업한 임성원 대표가 참여해 바이오테크와 인공지능을 결합한 최적의 맞춤형 암 치료제 개발 사례를, 스탠드업 테라퓨티스(Stand Up Therapeutics)의 유준상 대표가 척추 손상 유전자 치료제에 대해 발표했다. 마지막 날에 는디지털 치료제와 디지털 헬스케어 기기를 주제로 KAIST 엄지용 교수와 전북대 안상민 교수가 좌장을 맡아 전 세계 바이오 헬스의 가장 큰 이슈중 하나인 디지털 치료제의 현재와 미래를 집중적으로 논의했다. 이를 위해, 사노피(Sanofi), 블루시그넘(BlueSignum), 림빅스(Limbix), 웰트(WELT) 등 글로벌 기업과 디지털 치료제 협회(Digital Therapeutics Alliance)의 메간 코더(Megan Coder) 정책부사장이 참여했다. 포럼을 총괄한 채수찬 WBIF 대표는 “반려동물 헬스케어 분야에서 기업과 대학의 최신 동향과 개발 사례 등을 공유한 이번 포럼은 반려동물 헬스케어의 현주소와 미래 전략 등에 대해서도 알아보는 자리로 마련했다”라고 설명했다. 이광형 KAIST 총장은 “WBIF가 각 분야의 전문가들이 자유롭게 의견을 나누는 장이 되어 국내·외 바이오 헬스 산업 발전과 국민 건강 향상을 도모하는 세계적인 바이오 포럼이 되길 바란다”라고 전했다.
2022.12.19
조회수 664
AI 기반 디지털 바이오 심포지움 개최
우리 대학이 지난 6일 'Al 기반 디지털 바이오 심포지엄'을 대전 본원 KI빌딩 매트릭스홀에서 개최했다. 첨단 바이오 분야는 대한민국의 미래의 먹거리를 창출하는 핵심 기술로 그 중요성이 나날이 커지고 있다. 최근에는 AI와 빅데이터 분석 기술이 발달하며 전통적인 생물학적 기법을 넘어선 데이터 기반 바이오 연구에 대한 관심이 집중되고 있다.현재, 세계 주요 국가 및 기업들은 디지털 바이오 분야의 선도 기술 선점을 위해서 경주하고 있다. 구글 딥마인드는 '알파폴드2'를 활용해 모든 단백질의 3차원 구조를 밝힐 수 있다고 공언하고 있으며, 인공지능 분석을 통한 바이오마커 발굴 및 약물 설계 기술 등은 학계, 벤처, 연구소 등에서 활발하게 연구되고 있다. 우리나라에서도 대통령 주재로 국가과학기술자문회의 전원회의를 개최해 첨단 바이오와 인공지능을 12대 국가전략기술에 포함해 디지털바이오 분야에 대한 연구 투자 확대 등을 계획하고 있다.6일 열린 심포지엄은 국내 AI 및 디지털 바이오 분야의 전문가들을 초청해 관련 연구 분야의 정보를 공유하며, 국내·외 과학기술계의 움직임에 발 빠르게 대처하기 위해 마련됐다. 이상엽 KAIST 연구부총장과 오민규 한국연구재단 차세대바이오 단장이 개회사와 인사말을 전했으며, 예종철 KAIST 디지털 헬스 추진단장이 심포지엄의 개요를 소개했다. 리 우(Li Yu) 홍콩중문대 교수가 기조연설을 맡아 '머신러닝을 이용한 RNA 구조 및 기능 예측'을 주제로 발표했으며, 13명의 국내·외 전문가들이 ▴AI in Cancer Research ▴AI in Omics ▴AI in Protein Design 등 총 세 가지 주제에 관한 첨단 기술들을 소개하고 이에 대한 비전을 제시했다. 심포지엄을 총괄한 예종철 KAIST 디지털 헬스 추진단장은 "인공지능이 IT 분야를 넘어 바이오 분야에서 새로운 발견을 이끌어가는 주요한 수단이 되고 있다"라고 설명했다. 이어, 예 단장은 "이러한 디지털 바이오의 변곡점에서 연구진들에게 새로운 비전을 제시할 수 있는 계기를 마련하기 위해 이번 심포지엄을 개최했다"라고 밝혔다.
2022.12.11
조회수 544
입을 수 있는 OLED로 소아 황달 치료기술 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 을지대학교 병원(김승연 교수, 임춘화 교수), 가천대학교(전용민 교수), 선문대학교(권정현 교수)와의 공동 연구를 통해 실제 직물 기반의 웨어러블 청색 OLED를 개발하고, 황달 질환을 앓는 신생아의 혈청에서 청색 OLED 광원에 의한 *빌리루빈 감소로 인한 황달 치료 효과를 확인했다고 22일 밝혔다. ☞ 빌리루빈: 혈액에서 산소를 공급해주는 적혈구가 수명을 다해 분해된 결과물로, 보통 간에 의해 해독되고 담즙으로 배설된다. 혈장 내 빌리루빈의 농도가 올라가면 피부와 눈의 흰자위가 누런색을 띠는 황달 증상이 나타난다. 신생아는 수명이 짧은 적혈구를 갖고 있으나 간 대사가 미숙해 빌리루빈을 많이 생산한다. 최경철 교수 연구실의 최승엽 박사, 가천대학교 의공학과 전용민 교수, 선문대학교 권정현 교수가 공동 제1 저자로 참여한 이번 연구는 첨단 과학기술 분야의 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)'에 지난 10월 30일 게재되었고, 속 표지 논문으로 선정됐다. 신생아의 황달 치료는 광선 요법, 약물 투여, 교환 수혈 등 다양한 방법으로 시행된다. 이 중 광선 요법은 체내에 축적된 빌리루빈을 빛에 노출해 변형시켜 체외로 방출하는 안전하고 효과적인 치료 방법이다. 대부분의 신생아 황달은 광선 요법으로 치료할 수 있어 가장 널리 활용되고 있다. 병원에서는 신생아의 혈액 내 빌리루빈 농도가 치료 범위를 초과하면 신생아를 신생아 집중치료실(NICU)에 입원시켜 인큐베이터의 스탠드에 장착된 청색 LED의 빛으로 치료한다. 이 방법은 신생아 황달 증상을 완화하는 데 매우 효과적이지만 신생아를 부모로부터 격리하고 치료하는 동안 모유 수유 중단, 청색광에 의한 망막 손상 방지를 위해 신생아의 눈은 반드시 눈가리개로 완전히 가려야 하는 등의 문제와 더불어 기존에는 LED 기반 설치형 플랫폼이 사용돼 웨어러블 치료 적용에 한계가 있었다. 최경철 교수 연구팀은 황달 치료에 효과적인 470nm(나노미터) 파장의 고출력 고신뢰성의 청색 OLED를 사람이 착용 가능한 직물 위에 구현했으며, 직물과 같은 높은 유연성을 유지하는 옷 OLED 소아 황달 치료 플랫폼을 개발했다. 직물 기반의 청색 OLED는 4V 미만의 저전압에서도 황달치료에 충분한 출력(> 20 μW/cm2/nm)을 확보했을 뿐만 아니라 100시간 이상의 구동 수명, 35℃ 미만의 낮은 구동 온도, 물세탁 신뢰성, 2mm(밀리미터) 수준의 낮은 곡률 반경에서 1,000회 이상을 견디는 유연성 등의 신뢰성을 확보할 수 있었다. 이번 연구에서 470nm 파장을 갖는 청색 OLED를 신생아의 혈청에 조사했을 시, 3시간 이내에 황달 치료가 완료됐다고 판단되는 빌리루빈 수치(12 mg/dL)에 도달했으며, 기존 병원에서 활용되는 LED 황달 상용 치료기기 대비 균일하면서도 효과적인 황달 치료 성능을 연구팀은 확인했다. 공동 제1 저자인 최승엽 박사, 전용민 교수(가천대), 권정현 교수(선문대)는 "이번 연구를 통해 실제 신생아가 착용해 황달 치료가 가능한 성능 및 신뢰성을 갖는 섬유 기반의 청색 OLED 개발에 성공했다ˮ며 "설치형 LED 치료기기의 단점을 보완하며 더욱 균일한 효과를 기대할 수 있는 웨어러블 황달 치료 기술이 상용화될 수 있는 기반을 마련했다ˮ고 말했다. 최경철 교수는 "OLED 분야는 우리나라가 최고 기술을 보유하고 있지만, 중국의 기술 추격이 예사롭지 않은 이 시점에, OLED의 다양한 응용 기술을 개발하는 것이 중국과의 OLED 기술격차를 더 벌릴 수 있고, OLED 응용 중, 직물 위 OLED 기반 웨어러블 의료 기술개발로 바이오 헬스케어 시대에 맞는 OLED 응용의 새로운 시장을 개척해, 우리나라의 OLED 기술이 계속 선두를 유지하기를 바란다ˮ라고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원으로 수행됐다.
2022.11.22
조회수 1395
㈜엔지노믹스, 생명과학과에 발전기금 24억 기부
㈜엔지노믹스(대표 서연수)가 24억 원의 발전기금을 우리 대학에 약정했다. ㈜엔지노믹스는 연구용 효소 개발 및 생산하는 바이오기업으로 2007년 설립됐다. 서연수 KAIST 생명과학과 교수가 최고기술경영자(CTO)를 역임한 뒤 지난해부터 대표를 맡고 있다. 발전재단 관계자는 "㈜엔지노믹스는 2015년부터 올해까지 우수한 박사학위논문을 발표한 학생들을 위한 장학금을 매년 기부해 온 기업"이라고 설명했다. 이어, "이번에는 ㈜엔지노믹스가 생명과학과와 향후 신약 개발을 위한 연구 협력을 추진하고 학과의 부족한 연구 공간을 증축하는 데 보탬이 되기 위해 거액의 발전기금을 쾌척했다"라고 전했다.이번 기부금은 생명과학과 건물 증축(가칭 바이오신약센터)기금으로 전액 사용된다. 2026년 상반기 준공 목표인 바이오신약센터는 교원 연구공간 및 학생 교육 공간 확보, 첨단 연구 장비 및 신약 연구시설 집적화, 행정·기술지원 시설 보강 등을 위해 건립을 추진 중이다. 14일 오전 KAIST 대전 본원 총장실에서 열린 발전기금 약정식에는 서연수 대표, 신용걸 연구소장, 김민정 이사 등 ㈜엔지노믹스 관계자들과 이광형 총장, 이균민 생명과학기술대학장, 이대엽 생명과학과 학과장 등 KAIST 관계자들이 참석했다. 이광형 총장은 "바이오신약센터는 신약 및 치료제 개발 연구로 우리 세대의 생존을 위협하는 다양한 문제를 해결하고 다음 세대에 인류의 난제 해결이라는 더 거대한 꿈을 심어줄 수 있는 교육과 연구의 공간이 될 것"이라고 말했다. 이어, 이 총장은 “차세대 생명과학을 실현하려는 움직임에 ㈜엔지노믹스의 발전기금을 값지고 귀하게 사용할 것"이라며 감사 인사를 전했다. 서연수 ㈜엔지노믹스 대표는 "㈜엔지노믹스는 새로운 신약 및 치료제를 개발해 미래 바이오 및 의료분야 난제를 극복하고 바이오메디컬 시대를 주도하겠다는 비전을 가지고 있다"라고 말했다. 이어, "이런 비전을 KAIST와 함께 이뤄가는 과정에서 생명과학과의 보다 큰 도약을 위한 작은 보탬이 되고자 교수로서의 정년을 앞두고 기부를 결정하게 되었다"라고 기부 소감을 밝혔다. 한편, ㈜엔지노믹스는 국내 최초로 유전자 가위 절단에 필요한 핵심 제한효소를 개발해 생산·판매하는 국내 유일의 기업이다. 지속 가능한 글로벌 단백질 바이오 기업으로 성장하여 최종적으로 치료용 효소 및 단백질 신약 개발을 목표로 하고 있다.
2022.10.14
조회수 1239
이상엽 연구부총장, 제67회 대한민국학술원상 수상
대한민국학술원은 16일 오후 학술원 대회의실에서 한덕수 국무총리 등이 참석한 가운데 '제67회 대한민국학술원상 시상식'을 연다고 15일 밝혔다. 대한민국학술원상은 세계적 수준의 우수하고 독창적 연구업적을 이룬 학자에게 주는 상으로 국내 학계에서 가장 오랜 역사를 갖고 있으며 1955년부터 279명이 수상했다. 이번 대한민국 학술원상은 자연과학기초부문, 자연과학응용부문, 인문학부문, 사회과학부문 등 4개 부문에서 각 2명씩 모두 8명이 상을 받는다. 수상자들은 상장과 메달, 부상으로 상금 각 1억 원을 받는다. 자연과학응용부문에서 미생물을 통해 가솔린 등의 연료를 생산하는 기술을 개발한 이상엽 우리 대학 생명화학공학과 특훈교수(연구부총장)가 뽑혔다. 오일쇼크 이후 석유를 대체할 수 있는 기술의 필요성이 커졌고, 최근에는 이산화탄소 감축 기술 개발이 시급한 상황이다. 이 교수는 바이오매스를 원료로 한 미생물을 이용해 가솔린 등 유용한 화학물질 생산기술을 처음으로 보고했다.
2022.09.15
조회수 1806
바이오 화학산업에 치명적인 파지 오염 해결방안 개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 중국 우한대학교 시 첸(Shi Chen), 리안롱 왕(Lianrong Wang) 교수 연구팀과 공동연구를 통해 `파지 저항성을 갖는 대장균 균주 개발'에 성공했다고 15일 밝혔다. 파지(phage)란 미생물에 대해 특이적 감염성을 갖는 바이러스를 의미한다. 파지에 감염된 미생물은 생리학적 특성이 크게 달라지거나 심한 경우 죽기 때문에 파지 오염은 미생물이 화학공장과 같은 역할을 하는 바이오 화학산업에서 치명적이다. 해당 연구 결과는 국제 학술지인 `네이쳐 커뮤니케이션스(Nature Communications)'에 지난 8월 2일 게재됐다. 또한 해당 연구의 중요성을 인정받아 네이쳐 커뮤니케이션스 에디터의 하이라이트로도 선정됐다. ※ 논문명 : Systematic strategies for developing phage resistant Escherichia coli strains ※ 저자 정보 : 이상엽(한국과학기술원, 공동 교신저자), Shi Chen(우한대학교, 공동 교신저자), Lianrong Wang(우한대학교, 공동 교신저자), Xuan Zou(우한대학교, 제1저자), Xiaohong Xiao(우한대학교, 제2저자), Ziran Mo(우한대학교, 제3저자), Yashi Ge(우한대학교, 제4저자), Xing Jiang(우한대학교, 제5저자), Ruolin Huang(우한대학교, 제6저자), Mengxue Li(우한대학교, 제7저자), Zixin Deng(우한대학교, 제8저자), 포함 총 11명 시스템 대사공학은 미생물 대사회로의 조작을 통해 여러 가지 화학물질들을 지속가능하고 친환경적인 방식으로 생산할 수 있게 하는 학문으로 전 세계적으로 심각한 화석연료 고갈 및 기후변화를 해결하는 데 있어 중요한 역할을 한다. 대장균은 시스템 대사공학적 엔지니어링에 사용되는 여러 가지 미생물 균주 중에서 가장 널리 사용되고 있는 대표적인 균주다. 시스템 대사공학의 도구 및 전략들의 발전과 이로 인해 만들어진 최적화된 미생물 균주들은 저렴하고 쉽게 구할 수 있는 원자재를 경제적 및 산업적 가치가 큰 제품으로 전환하는 데 있어 중요한 역할을 할 것이다. 이러한 재생 가능한 바이오화학산업을 구축하는데 꼭 해결돼야 하는 문제 중 하나는 발효 중 파지 오염이다. 발효 중 파지 오염은 숙주 세포에 치명적인 영향을 미치기 때문에 전체 바이오 공정의 생산성에 큰 영향을 미치며 그 결과 막대한 경제적 손실이 일어난다. 산업적 발효에서 파지 오염은 유전 공학을 통한 파지 방어 시스템 도입을 통해 효과적으로 막을 수 있다. 하지만 지금까지 알려진 대부분의 파지 방어 메커니즘은 한정된 종류의 파지만 방어할 수 있어 제한된 효과를 볼 수 있었다. 이러한 문제를 해결하기 위해 공동연구팀은 대장균 3234/A 균주에서 존재하는 외가닥 DNA(single-stranded DNA) (인산황화)phosphorothioation (이하 Ssp)라 명명한 신규 파지 방어 메커니즘을 발견 및 규명했으며 해당 Ssp 파지 방어 시스템이 산업적으로 유용한 여러 가지 대장균 균주에 적용될 수 있고, 그 결과 여러 종류의 파지를 방어할 수 있음을 확인했다. 또한 게놈 상에 Ssp 방어 모듈을 도입하고 파지 생애주기에 필수적인 유전자의 변형과 같은 체계적인 엔지니어링 전략을 개발했다. 이러한 전략들을 통해 파지 공격에 취약한 대장균 균주를 여러 가지 파지들에 내성을 부여할 수 있었으며, 이렇게 엔지니어링된 대장균들은 파지들이 있을 때도 일반적인 대장균과 똑같은 성장 속도와 생리학적 특성을 갖는 것을 확인했다. 또한 높은 농도의 파지가 존재하는 환경에서도 화학물질 및 재조합 단백질을 생산하는 능력을 유지했다는 것을 연구팀은 확인했다. 우리 대학 생명화학공학과 이상엽 특훈교수는 “이번 연구는 발효 산업에서 큰 문제점이었던 파지 오염을 해결하기 위해 여러 가지 파지에 대한 저항성을 부여하는 체계적인 해법을 제시했다는 점에 의의가 있다”며 “이번 기술을 활용해 미생물 기반의 유용한 화학제품을 만드는 데 한 단계 앞으로 나아갈 수 있을 것”이라고 밝혔다. 이번 연구는 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’의 지원을 받아 수행됐다.
2022.09.15
조회수 1493
안철수 의원 초청 특별강연 개최
우리 대학은 2일 오후 대전 본원 의과학대학원 ‘하자 유욱준홀’에서 안철수 의원 특별강연을 개최했다. 의과학대학원과 의과학연구센터가 주관한 이날 행사는 바이오 의료산업의 미래와 의사과학자의 역할에 관해 우리나라 1세대 의사과학자인 안 의원의 전망과 경험을 공유하기 위해 마련됐다. “제가 의사과학자 출신으로 어떤 생각을 가지고 살아왔는지를 이야기해드리는 것이 진로를 고민하는 학생들에게 조금이라도 도움이 될 수 있을 것 같아 이 자리에 왔다”라고 말문을 연 안 의원은 “진로를 고민하던 당시 의사는 나 말고도 3만 명이나 있지만, 컴퓨터 백신을 만들 사람은 나 하나뿐이라는 생각으로 성공 확률에 대한 고민 없이 사회가 필요로 하는 일을 찾아갔다”라고 경험담을 공유했다. 또한, 의사과학자의 역할에 관해서는 “코로나19 환자를 위한 mRNA 백신 개발은 과학과 의학의 융합을 통해 가능했던 일인데 미국 정부는 이것을 미리 내다보고 제도를 바꾸고 규제를 없애서 백신 개발을 가속하는 방법을 찾아냈다”라고 예시를 들었다. 이어, “이곳에 있는 여러분 중에서도 바이오산업을 발전시킬 사람, 벤처를 만들어 사업에 성공하는 사람, 행정가가 되어 우리나라 경쟁력을 향상시킬 수 있는 사람이 나올 것이다”라며, “법만 아는 것이 아니라 과학과 의학을 함께 아는 사람은 법규를 미리 만들고 규제를 없애는 일에서 대체 불가능한 존재가 되어 우리나라 발전에 꼭 필요한 역할을 하게 될 것”이라고 특강에 참석한 의과학대학원 재학생들을 격려했다. 의사과학자는 의료 현장에서의 임상 경험에 과학기술 지식을 접목해 질병 치료, 의약품 및 의료기기 개발 등 다학제적 분야에서 융합연구 역량을 발휘할 수 있는 의사이자 전문 연구자를 의미한다. 2004년 설립된 우리 대학 의과학대학원은 245명의 졸업생(박사 220명, 석사 25명)을 배출했으며, 이 중 168명이 의사과학자(박사)다. 의과학대학원의 확대 발전을 위해 현재 25명인 교원 수를 26년까지 50명으로 확대하는 것이 우리 대학의 목표다. 이뿐만 아니라, 의사과학자만을 전문적으로 양성하는 과학기술의학전문대학원 설립을 제안하고 있다. 이와 함께 문지캠퍼스를 바이오 메디컬 캠퍼스로 특화하는 방안을 구상하고 있다. 첨단 동물실험동, 혁신디지털의과학원이 구축된 문지캠퍼스로 의과학대학원이 이동해 의사과학자/의사공학자를 양성하고 첨단 의료산업 진출할 수 있는 교두보를 마련하기 위한 계획이다. 이에 대해, 안 의원은 “예전에는 실험화학만 가능했지만, 요새는 수학·화학·컴퓨터 과학이 합쳐진 이론화학이 등장했다”라며, “사람이 인위적으로 만든 분야의 접점과 경계에서 성과가 나오는 시대이며 그것이 융합이다”라고 설명했다. 이어, “지금 KAIST가 가려고 하는 길이자 KAIST만 가능한 길은 새로운 융합 분야에서 다양한 시도를 하고 그것을 다른 대학들이 따라 할 수 있도록 선도하는 길이라고 믿는다”라고 의견을 밝혔다. 한편, 이날 특강에는 우리 대학 이광형 총장을 비롯해 의과학대학원 교수, 의사과학자 과정 재학생 및 졸업생 50여 명이 참석했다.
2022.09.02
조회수 2704
대규모 한국인 자폐증 가족 유전체 연구를 통한 새로운 자폐 유전변이 최초 발견
우리 대학 의과학대학원 이정호 교수와 바이오및뇌공학과 최정균 교수, 생명과학과 김은준 교수(IBS 시냅스뇌질환연구단장), 분당서울대병원 유희정 교수, KISTI 공동 연구팀이 아시아 최초로 대규모 한국인 자폐증 가족 코호트를 모집하고 전장 유전체 분석을 실시해 자폐증 유발 유전변이가 단백질을 암호화하지 않는 유전체 영역인 비-부호화 영역에서 발생할 수 있다는 사실을 규명했고, 이를 통해 자폐증 원인의 새로운 이해와 치료 전기를 마련했다고 19일 밝혔다. 이번 연구내용은 세계적 정신의학 학술지 ‘분자 정신의학(Molecular Psychiatry)’에 7월 15일 자에 게재됐다. 자폐증은 사회적 의사소통 결핍이나 이상, 반복적이거나 틀에 박힌 행동 문제가 유아 시절 시작돼 거의 평생 지속되는 뇌 신경 발달장애로, 질환 발생의 근본적인 원인에 대한 이해가 매우 부족하며, 공식적으로 인정된 치료 약제가 전무하다. 자폐증 원인에 대한 이해의 필요성은 대중들의 높은 관심을 통해서도 가늠해볼 수 있는데, 예를 들어 최근 세간의 이목이 집중된 드라마 ‘이상한 변호사 우영우’의 주인공이 자폐증을 앓고 있다. 연구진은 자폐증 유발 유전변이가 비-부호화 유전체 영역에서 발생한다는 사실을 발견했으며, 이를 세계 최초로 한국인 자폐증 샘플로 제작한 인간 줄기세포를 이용해 증명했다. 자폐증의 근본 원인을 규명한 획기적인 연구 결과로서, 기존 연구의 한계를 뛰어넘어 그간 유전체 분야의 난공불락으로 여겨졌던 비-부호화 영역에 초점을 맞춘 혁신적인 발상으로 자폐증 치료의 새로운 전기가 마련될 것으로 예상된다. 연구진은 IBS와 한국연구재단, 국가바이오빅데이터 사업단의 지원을 통해 2011년부터 현재 3,708명에 달하는 자폐 환자와 그 가족들로 구성된 대규모 한국인 코호트를 구축하고 유전체 분석을 진행하고 있으며, 이번 연구 결과는 813명의 전장 유전체 염기서열 분석을 바탕으로 이뤄졌다. (그림 1) 유전체 데이터의 98% 이상을 차지하고 있으나 그간 자폐증 유전체 연구에서 조명받지 못했던 비-부호화 영역을 집중적으로 규명하고자, 연구진은 3차원 공간상의 염색질 상호작용(three-dimensional chromatin interaction)이라는 새로운 분석 방식을 사용했으며 (그림 2), 비-부호화 영역에서 발생한 유전변이가 멀리 떨어져 있는 자폐 유전자의 기능에 심각한 이상을 초래할 수 있음을 증명했다. (그림 3) 특히, 본 코호트의 한국인 자폐증 가족으로부터 직접 인간 줄기세포를 제작해 태아기 신경세포를 재현했으며, 이러한 생애 초기 신경 발달단계에서 비-부호화 영역의 유전변이에 의해 최대 500,000 base-pair(유전체 거리 단위) 이상 떨어져 있는 유전자의 발현이 비정상적으로 낮아지거나 높아질 수 있음을 세계 최초로 증명했다 (그림 4) 이번 연구 성과는 자폐증 유발 유전변이가 단백질을 부호화하지 않는 비-부호화 영역에서 발생해, 멀리 떨어져 있는 유전자의 기능에 영향을 미침으로써 신경 발달단계 초기부터 질병 발병에 기여한다는 획기적인 자폐증 원인에 대한 발견이다. 연구팀은 그간 단백질을 부호화하는 영역에만 쏠려 있던 정신질환 연구 풍토 속에서, 비-부호화 영역을 규명하는 방향으로 전환해야 자폐증 치료의 비밀을 풀 수 있다는 새로운 접근법을 제시했다. IBS 시냅스뇌질환연구단(김은준 교수팀 프로젝트 제안 및 개시), 서울의대 및 분당서울대병원(유희정교수팀 코호트 구축 및 임상 평가), KISTI(대용량 컴퓨팅 리소스 및 유전체 데이터 분석 파이프라인 제공), KAIST (이정호 교수팀, 최정균 교수팀 비-부호화 영역 유전변이 분석) 공동 연구팀이 통합된 유전체-임상 데이터에 대해 3차원 공간상의 염색질 상호작용 분석을 통해 비-부호화 영역에서 발생한 유전변이가 자폐증 발병에 기여함을 규명했다. 이는 순수 국내의 임상가와 기초과학자, 생물정보학 전문가의 융합연구로 이루어낸 성과이며, 아시아 최초의 대규모 전장-유전체 데이터 기반 코호트 구축과 유전체 분석 모델의 기틀을 마련함으로써 대한민국 유전체 연구의 선도적인 역할을 한 것이다. 자폐 유전체 연구는 지난 10년간 북미와 유럽을 위주로 대규모로 진행됐으나, 한국을 비롯한 아시아에서는 상대적으로 연구가 덜 진행됐다. 논문의 공동 제1 저자인 KAIST 의과학대학원 졸업생 김일빈 박사는 “신경발달장애 중 자폐증은 특히 치료가 어려운 것으로 알려져 있는데, 발병 원인 중 하나로 지목되는 유전체 영역의 이상을 한국인 고유의 데이터를 사용해 순수 국내 연구진들의 힘으로 발견해냈다는 데 큰 의미가 있으며, 이 연구 성과가 언젠가는 이루어질 자폐증 치료제 개발을 위한 작은 발판이 되길 바란다”라고 말했다. 분당서울대병원의 유희정 교수도 “우리나라 연구진의 힘을 모아 자폐증의 비밀을 풀기 위한 첫걸음을 내딛었다. 연구에 참여해 준 당사자와 가족들의 헌신으로 이룬 일이라고 생각한다. 하지만 우리가 자폐증의 발병 기전을 완전히 이해하고 나아가 치료제를 개발하기 위해서는 아직 연구해야 할 것이 많다. 유전체 연구에 대한 국가 차원의 지원이 절실하며, 자폐증을 가진 분들과 가족들의 관심도 꼭 필요하다”는 점을 강조했다. 한편 이번 연구는 서경배과학재단, 한국연구재단, 보건산업진흥원사업을 통해 수행됐다.
2022.07.19
조회수 2920
대량의 고농도 일산화탄소를 고부가가치 바이오케미칼로 전환하는 기술 개발
우리 대학 생명과학과 조병관 교수 연구팀이 산업 부생가스 등으로 대량 발생하는 고농도의 일산화탄소를 고부가가치 바이오케미칼로 전환할 수 있는 생체촉매 기반 C1 바이오 리파이너리 기술*을 개발했다고 14일 밝혔다. * 제철 공정과 같은 산업공정에서 발생하는 부생가스, 합성가스는 다량의 일산화탄소, 이산화탄소 등의 탄소 1개로 이루어진 C1 가스로 구성되어 있음. 이러한 C1 가스를 미생물과 같은 생체촉매를 활용하여 다양한 화학물질로 전환하는 공정을 C1 가스 바이오 리파이너리(bio-refinery) 기술이라고 함. 최근 탄소 포집 및 전환과 같은 기술들에 대한 산업계의 요구가 커지는 가운데, 미생물을 활용한 친환경 생체촉매 기술이 크게 성장하고 있다. 조병관 교수 연구팀은 아세토젠 미생물을 생체촉매로 활용한 C1 가스 바이오 리파이너리 기술을 개발했다. 이 미생물들은 혐기성 미생물들로 우드-융달 대사회로라는 매우 독특한 대사회로를 이용하여 C1 가스로부터 아세트산을 만드는 미생물로 알려져 있다. 이러한 아세토젠 미생물을 생체촉매로 활용해 산업 부생가스를 활용하는 기술에는 한 가지 문제가 있는데, 바로 독성가스인 일산화탄소의 농도다. 이 미생물은 60% 이상의 고농도 일산화탄소 조건에서는 생명 활동이 크게 저해를 받기 때문에, 생체촉매로써 사용할 수 없게 된다. 다양한 산업에서 발생하는 C1 가스는 공정 과정에 따라 10~70% 정도의 일산화탄소가 포함돼있는데, 특히 철강산업 공정에서 발생하는 고로가스(BFG)에는 약 60%가 넘는 일산화탄소가 포함돼 있다. 따라서, 미생물 기반 고효율 생체촉매 개발을 위해서는 일산화탄소에 대한 저항성을 높이는 것이 필수적으로 선행돼야 한다. 연구팀은 아세토젠 미생물 중 하나인 유박테리움 리모좀(Eubacterium limosum) 균주를 고농도 일산화탄소 조건에 지속적으로 노출해 일산화탄소에 대한 내성이 뛰어난 돌연변이체(ECO2)를 발굴했는데, 해당 돌연변이체는 일산화탄소가 약 60% 이상 포함된 합성가스 조건에서 야생형 미생물보다 약 6배 정도 빠른 성장 속도를 보였다. 이러한 성장 속도는 현재까지 보고된 아세토젠 미생물 중 고농도 일산화탄소 조건(CO 함량 60% 이상)에서 전 세계에서 가장 빠른 속도다. 연구팀은 위의 돌연변이 미생물의 유전체 서열분석을 통해 아세틸 조효소 A 합성 단백질(acetyl-CoA synthase)을 암호화하는 유전자(acsB) 내 돌연변이가 발생한 것을 규명하고, 인공지능 기반의 구조예측을 통해 이러한 변이가 일산화탄소 내성 및 고정률 향상을 유도했음을 밝혔다. 연구팀은 일산화탄소에 대한 내성이 향상된 ECO2 돌연변이 미생물에 2,3-부탄다이올(2,3-butanediol, 2,3-BDO)* 생합성 경로를 도입해 C1 가스를 C4 화학물질로 전환할 수 있는 미생물 기반 생체촉매 시스템을 개발했다. ECO2 기반의 생체촉매가 가스 발효과정을 통해 야생형 미생물 대비 약 6.5배 정도의 높은 2,3-BDO 생산성을 보여줌으로써, C1 가스를 효율적으로 C4 화학연료로 전환하는데 성공했다. *2,3-부탄다이올(2,3-butanediol, 2,3-BDO): 농업용 자재, 식품첨가제, 의약품 첨가제, 고분자 첨가제 등 활용 범위가 광범위한 바이오케미칼 연구를 주도한 조병관 교수는 “산업공정 과정에서 발생하는 C1 가스는 일산화탄소, 이산화탄소 등의 혼합가스로, 이를 직접적으로 미생물이 이용하기 위해서는 일산화탄소에 대한 내성 및 전환율 향상이 필수적이다”라고 설명했으며, “다양한 합성생물학 기술들 활용하면 아세토젠 미생물 생체촉매의 활용도를 더욱 개선할 수 있으며, 이러한 고효율 C1 가스 전환 생체촉매 연구는 C1 가스 바이오 리파이너리의 핵심 원천기술로 다양한 산업현장에 적용할 수 있을 것”라고 밝혔다. 생명과학과 진상락(석박사통합과정), 강슬기(박사과정) 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘화학 공학 저널(Chemical Engineering Journal, 영향력지수 14.66)’에 6월 22일 字 온라인판에 게재됐다. (논문명: Development of CO gas conversion system using high CO tolerance biocatalyst) 한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업단의 지원을 받아 수행됐다.
2022.07.15
조회수 2142
KAIST-생명연, 합성생물학 연구 및 바이오파운드리 구축 위해 협력
우리 대학과 한국생명공학연구원(원장 김장성, 이하 생명연)이 합성생물학과 바이오파운드리 분야의 발전을 위한 본격적인 협력에 나선다. 합성생물학(synthetic biology)은 공학 기술을 활용해 생명체가 가진 특성을 변화시키거나, 자연적으로 존재하지 않는 특성을 새롭게 설계하고 제작하는 연구 분야다. 자연에서 유래한 생명체는 저마다 고유하고 복잡한 시스템으로 이루어져 있어서 인간이 구조 그대로를 재현해내기 어렵다. 또한, 생물학 연구는 방법이 매우 복잡해 연구개발 속도가 느리다는 것이 기존 바이오 분야가 봉착한 기술적 한계였다. 합성생물학은 인공지능과 자동화된 설비, 표준화된 부품과 모듈을 사용해 연구개발의 속도와 효율을 동시에 개선할 수 있어 미래 바이오산업을 이끌어갈 핵심기술로 주목받고 있다. 미국, 영국, 일본, 중국 등의 국가들은 정부의 투자를 발판삼아 합성생물학에 인공지능, 로봇 기술 등을 적용해 제조공정을 자동화하는 바이오파운드리를 일찌감치 구축하고 기술 주도권 확보를 위한 경쟁을 가속화하고 있다. 두 기관은 주요 과학기술 강국들을 추격해 기술격차를 좁히고 관련 핵심기술을 선제적으로 확보해야 한다는 공감대를 바탕으로 이번 협력을 도모했다. 또한, 국내 열악한 바이오파운드리 환경을 개선하기 위해서는 지속적이면서도 안정적인 서비스 제공할 수 있으며, 기술 수요자들이 쉽게 접근할 수 있도록 공공인프라를 구축해야 한다는 공동의 목표를 추진하고 있다. 이를 위해 두 기관은 지난 6일 '합성생물학 연구 및 바이오파운드리 공동 구축을 위한 업무 협약' 체결을 완료했다. KAIST는 20여 년 전부터 합성생물학과 학문적 배경이 유사한 시스템생명공학과 시스템대사공학 분야를 개척해왔다. 세계 최초이자 최고효율을 내는 다양한 세포공장 개발하는 등 세계적 수준의 연구역량을 보유하고 있으며, 합성생물학 분야 인력양성을 위한 프로그램 확충 등을 추진하고 있다.생명연은 10여 년 전부터 합성생물학 전문 연구조직인 '합성생물학전문연구단'을 운영해 관련 원천기술을 확보해왔으며, 최근 ‘합성생물학연구소’로 조직을 확대 개편했다. 파일럿 규모의 연구용 바이오파운드리를 구축하는 등 미생물 세포공장, 산업용 효소, 생분해성 플라스틱 소재 등을 개발하는 연구를 진행하고 있다. 두 기관은 글로벌파운드리연맹(global biofoundries alliance, GBA)에도 함께 참여하는 등 우리나라 바이오파운드리 분야의 구심점 역할을 수행하고 있다. 이번 협력은 정부가 추진 중인 바이오파운드리 사업을 유치하기 위한 계획 수립은 물론 공동 연구 인프라 조성과 향후 원활한 사업 운영 및 활용까지 두 기관이 전방위로 긴밀한 유대를 맺는 교두보가 될 전망이다. 이광형 KAIST 총장은 "합성생물학의 속도와 규모, 경제성을 극대화하는 바이오파운드리 구축은 바이오산업 시대에 우리나라가 국제적인 리더십을 확보하는 가장 확실한 전략"이라고 강조했다. 이어, "국내 바이오 분야의 첨단 연구개발을 이끄는 두 기관이 손을 잡고 국가의 미래 경쟁력을 좌우할 핵심 인프라를 구축하는 일에 우수한 역량을 보탤 수 있길 기대한다"라고 밝혔다. 김장성 생명연 원장 또한 "바이오가 직면한 기술적 한계 극복과 미래 바이오로의 패러다임 전환에 핵심기술로 여겨지는 합성생물학 기술의 성패는 세계적인 경쟁력을 가진 바이오파운드리의 구축에 달려있다"라며, "관련 분야의 우리나라 대표 연구 주체인 KAIST와 생명연의 협력으로 바이오경제 실현에 한 걸음 내딛을 수 있기를 바란다"라고 전했다. 한편, 지난해 우리 정부는 다양한 기관과 기업이 연구에 활용할 수 있도록 바이오파운드리를 국가 핵심 인프라로 구축하겠다는 계획을 밝혔다. 또한, 바이오 제조 혁신을 위한 합성생물학 생태계 조성 및 지원 계획도 수립된 상태다. 현재, 바이오파운드리 구축 및 활용기술 개발 사업은 예비타당성조사가 진행 중이다.
2022.07.14
조회수 1839
2022년 창의도전연구실 16개 선정 및 현판식 개최
우리 대학 연구처가 ‘2022년 창의도전연구실’ 16개를 선정하고 5월 30일(월) 오후 현판식을 개최했다. ‘창의도전연구사업 C2(Creative & Challenging) 프로젝트’란 학술적·사회적 의미가 크고 미래 사회 이슈로 대두될 가능성이 높은 문제를 선 발굴, 선 해결하는 연구를 지원하는 사업이다. 이는 우리 대학 이광형 총장이 미래 50년을 위해 제시한 ‘QAIST 신문화 전략’ 중 하나로, 연구자들이 실패를 두려워하지 않고 창의적인 아이디어로 과감하게 문제에 도전하는 연구 문화를 조성하고자 기획됐다. 연구처는 지난 3월 공고를 시행하고 창의성과 도전성을 기준으로 총 16개 과제를 선정했다. 5월 30일(월) 5시에 열린 `창의도전연구실(Creative&Challenging)' 현판식은 제안 주제 중 최고점을 받은 바이오및뇌공학과 박성준 교수 연구실에서 대표로 진행했다. 현판식에는 이광형 총장, 이상엽 연구부총장, 조광현 연구처장, 이동만 공과대학장, 정기훈 바이오및뇌공학과장, 성단근 명예교수와 박성준 교수(연구책임자)가 참석했다. 박성준 교수는 “창의도전연구실에 선정 되어 매우 기쁘다. 앞으로 ‘리버스 뇌 오가노이드-기계 인터페이스 개발’ 연구에 책임을 다하겠다. 본 연구 지원 사업을 통해 새로운 문제에 다양한 아이디어로 도전하며 개념검증을 시행할 것”이라고 소감을 전했다. 한편, 2022년 말까지 진행하는 본 사업에 선정된 16개 과제에는 각 5천만 원 이내의 연구비를 지원한다. 연구처는 향후 평가를 통해 선정된 과제에 대해 창의적 기초융합연구 관련하여 보다 중장기적으로 지원하는 ‘도약연구(UP) 사업’으로 연계하여 지속 지원할 예정이다. 또한, 연말 수행평가에서 문제해결과 검증을 탁월하게 제시한 우수 교원에게는 2023년 리서치데이에 ‘QAIST 창의도전 연구상’을 수여할 계획이다.
2022.06.09
조회수 2998
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 18