본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%AF%B8%EC%83%9D%EB%AC%BC
최신순
조회순
대장균 이용한 페놀 생산 성공
- 세계 최초로 대장균 이용해 리터당 3.8g의 페놀을 24시간 내 생산 성공 - 우리 학교 이상엽 특훈교수팀은 대장균을 이용해 재생 가능한 바이오매스로부터 페놀(phenol)을 생산하는 원천기술을 개발해 바이오테크놀로지(Biotechnology) 11일자 온라인판에 게재됐다. 이 기술은 친환경적인 미생물 발효 공정을 통해 화학물질을 생산하는 대사공학·공정 기술을 기반으로 개발돼 국내·외 생명공학 및 산업기술 발전에 크게 기여할 것으로 기대된다. 페놀은 석유화학공정을 통해 연간 800만 톤 이상 생산돼 폴리카보네이트, 에폭시, 제초제 등 다양한 산업에 폭넓게 사용되는 화학물질이다. 페놀이 갖고 있는 미생물에 대한 독성으로 인해 미생물을 이용한 페놀의 생산에 대한 연구는 그동안 어려움이 많아 생산량이 리터당 1g 미만 수준으로 더 이상의 향상이 이루어지지 못하고 있는 실정이었다. 최근 다양한 대장균들의 유전적, 생리·대사적 차이점이 보고되고 있는데 이 교수 연구팀은 이에 주목해 18종의 다양한 대장균 균주에 대해 동시에 대사공학을 적용해 그 중 ‘BL21’ 이라는 대장균 균주가 페놀생산에 가장 적합하다는 것을 발견했다. 연구팀이 적용한 기술 중 ‘합성 조절 RNA 기술’은 기존의 유전자 결실 방법보다 월등히 빠른 시간에 대사흐름의 조절을 가능하게 하는 기술로써 이번 연구에서도 18종의 대장균에 대한 대사공학을 동시에 진행하는데 중요한 역할을 했다. 또 미생물을 이용한 페놀의 생산에 있어 가장 큰 걸림돌이 페놀의 독성인데 연구팀은 발효공정에서 페놀의 대장균에 대한 독성을 최소화 할 수 있는 이상발효 공정(biphasic fermentation)을 이용해 페놀의 생산량을 증가시킬 수 있었다. 이렇게 개발된 대장균 균주는 기존 균주에 비해 월등히 높은 생산량과 생산능력을 보였으며 이상 유가식 발효(biphasic fed-batch fermentation)에서 리터당 3.8g의 페놀을 24시간 내에 생산할 수 있었다. 즉, 대장균을 이용해 재생 가능한 바이오매스로부터 쉽게 얻어질 수 있는 포도당을 이용해 페놀을 생산할 수 있는 균주를 개발해 세계 최고의 페놀 생산능력을 보이는 균주를 개발했다. 김병진 박사는 “다양한 합성생물학 기술들을 기반으로 대장균을 개량해 페놀을 처음으로 생산했으며 가장 높은 농도와 생산성을 기록했다”며 “발효 공정의 개량을 통해 미생물에 독성을 지니는 화합물의 생산가능성을 보여줬다는데 커다란 의미가 있다”고 말했다. KAIST 생명화학공학과 이상엽 특훈교수 지도하에 김병진 박사, 박혜권 연구원이 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 글로벌 프론티어사업 지능형 바이오시스템설계 및 합성연구단의 지원을 받아 수행됐다.
2013.10.30
조회수 16092
세계 최초로 미생물 이용 가솔린 생산
- 대장균의 지방산 대사회로를 대사공학적으로 개량하여 알코올, 디젤, 가솔린 생산 - 우리 학교 연구진이 세계 최초로 대사공학적으로 개발된 미생물을 이용하여 바이오매스로부터 가솔린(휘발유)을 생산하는 원천기술을 개발했다. 이 신기술은 나무 찌꺼기, 잡초 등 풍부한 비식용 바이오매스를 이용하여 가솔린, 디젤과 같은 바이오연료, 플라스틱과 같은 기존 석유화학제품을 생산할 수 있어 생명공학 등 관련 산업기술 발전에 크게 기여할 것으로 기대된다. 이번 연구는 미래창조과학부(장관 최문기) 글로벌프론티어사업의 차세대 바이오매스 연구단(양지원 단장)과 기후변화대응 기술개발사업의 지원으로 이상엽 특훈 교수팀이 진행하였으며, 연구결과는 네이처(Nature) 9월 30일(온라인판)에 게재되었다. * 논문명 : Microbial production of short-chain alkanes 연구팀은 세포의 유전자를 조작하여 원하는 형태의 화합물을 대량으로 생산하도록 하는 기술인 대사공학을 이용하여 크래킹(cracking) 없이 세계 최초로 미생물에서 직접 사용가능한 가솔린을 생산하는데 성공했다. * 크래킹 : 끓는점이 높은 중질유를 분해하여 원료유보다 끓는점이 낮은 경질유로 전환하는 방법 가솔린은 탄소수가 4~12개로 이루어진 사슬모양의 탄화수소 화합물로 그 동안 미생물을 이용하여 ‘짧은 사슬길이의 Bio-Alkane(가솔린)’을 생산하는 방법은 개발되지 않았다. 따라서 기존 기술은 추가적인 크래킹(cracking) 과정을 거치지 않고는 가솔린으로 전환할 수 없어 비용과 시간이 많이 소요되는 한계가 있었다. * 2010년 미국에서 사이언스지에 발표한 미생물 이용 Bio-Alkane(배양액 1리터당 약 300mg)의 경우 탄소 사슬 길이가 13~17개인 바이오 디젤에 해당 연구팀은 대사공학기술을 미생물에 적용하여 지방산 합성을 저해하는 요소를 제거하고, 지방산의 길이를 원하는 목적에 맞게 조절할 수 있는 효소를 새롭게 발견하였으며, 개량된 효소를 도입하여 미생물에서 생산하기 어려운 길이가 짧은 길이의 지방산 생산에 성공하였다. 또한 세포내에 생산된 짧은 길이의 지방산 유도체로부터 가솔린을 생산할 수 있는 추가 대사반응과 생물체 내에 존재하지 않는 식물 유래의 신규 효소를 포함하는 합성대사경로를 도입하여 최종 대장균 생산균주를 개발하였다. 이렇게 개발된 대장균을 배양하여 배양액 1리터당 약 580mg의 가솔린을 생산하는데 성공했다. 개발된 기술은 바이오 연료, 생분해성 플라스틱 등과 같은 다양한 바이오 화합물을 생산할 수 있는 플랫폼 기술이 될 수 있을 것으로 전망된다. 또한 이 기술을 활용하면 재생 가능한 바이오매스를 전환하여 바이오 연료, 계면활성제, 윤활유 등으로 이용할 수 있는 알코올(Fatty alcolols) 및 바이오 디젤(Fatty ester)도 생산이 가능하다는 점에서 기존의 석유기반 화학산업을 바이오기반 화학산업으로 대체하는 기반이 될 수 있을 것으로 기대된다.이상엽 교수는 “비록 생산 효율은 아직 매우 낮지만 미생물을 대사공학적으로 개량하여 가솔린을 처음으로 생산하게 되어 매우 의미있는 결과라고 생각하며, 향후 가솔린의 생산성과 수율을 높이는 연구를 계속할 예정”이라고 밝혔다. 그림 1. 대장균을 이용한 바이오 매스로부터 short-chain alkane(가솔린)을 생산하는 대사회로 a) 지방산 분해 회로 차단, b) 바이오 매스로부터 짧은 길이의 지방산을 대량 생산, c) 지방산을 가솔린 생산의 중간체인 fatty acyl-CoA로의 전환 유도, d) fatty acyl-CoA의 가솔린의 직접적인 전구체인 fatty aldehyde로의 전환 유도, e) 최종 가솔린 생산 (보충설명) 미생물의 세포 내부를 들여다보면, 매우 복잡한 지방산 대사회로 네트워크가 존재 한다. 지방산은 세포 내부에서 합성되어, 미생물이 살아가는데 필요한 세포막을 형성하거나, 분해되어 에너지원으로 사용되기도 한다. 대부분의 미생물에서 지방산은 전체 세포의 1%도 되지 않을 만큼 소량 만들어지고, 지방산의 길이 또한 매우 길기 때문에, 이러한 지방산을 이용해서 우리가 원하는 화합물을 대량으로 만들거나, 새로운 화합물을 생산하는 것은 매우 어려웠다. 이를 극복하기 위하여, 이상엽 특훈교수 연구팀은 시스템 대사공학적 기법을 대장균에 도입하여 효소의 개량 및 지방산 합성을 저해하는 요소를 제거하여 짧은 길이의 지방산 과생산에 성공하였고, 생물체내에 존재 하지 않는 신규 회로를 도입하여 지방산을 가솔린으로 전환하는데 성공하였다. 그림 2. short chain alkane을 생산하는 발효 공정 시스템 (보충 설명) 위와 같은 cooling 장치가 연결된 발효기를 통하여 가솔린을 생산함
2013.10.01
조회수 21549
세계 최초 맞춤형 미생물 균주 대량 생산기술 개발
- 고부가가치 산업원료 생산 균주를 간편하고 빠르게 개발할 수 있는 원천기술 확보 - 우리 학교 생명화학공학과 이상엽 특훈교수와 유승민 연구교수 연구팀은 나일론 등 산업에 필요한 원료를 만드는 미생물 균주를 친환경 방법으로 쉽고 빠르게 대량 생산할 수 있는 ‘합성 조절 RNA’ 설계 원천기술을 세계 최초로 개발했다. 이번 연구결과는 세계적 학술지인 네이처 프로토콜스(Nature Protocols) 9월호 표지논문으로 선정되어 8월 9일 게재(온라인판)됐다. ’합성 조절 RNA 설계 기술’은 기존에 산업 균주를 개량하거나, 아직까지 알려지지 않은 미개척 산업 균주 개발‧개량에 광범위하게 적용이 가능하여 비천연 고분자를 포함한 다양한 화학물질, 원료, 의약품 등을 보다 효율적으로 개발, 생산할 수 있는 핵심원천기술이다. 기존의 균주개발은 유전자 결실(knockout) 이라는 유전공학 기법을 이용하여 미생물 염색체 내의 유전자를 하나씩 제거하는 방법을 통해 미생물내의 생산 물질의 양이 증가하는지를 관찰하는 것이었다. 그러나 아무리 작은 미생물일지라도 수천 개 이상의 유전자로 이루어져 있기에 이런 접근 방법을 통해 생물체 대사회로내의 모든 유전자를 조절한다면 수개월에서 수년의 시간이 소요되고 대용량 실험이 매우 어려우며, 미생물의 생장을 저해하고 원치 않은 물질들이 생산되는 한계가 있었다. 이상엽 교수와 유승민 연구교수는 이러한 기존 방법의 한계 극복을 위해 해당 유전자와 결합되는 부위의 합성 조절 RNA 유전정보를 바꾸는 ‘합성 조절 RNA’ 설계법을 개발하였다. 이를 통해 대장균의 조절 RNA를 기본골격으로 하여 세포내 존재하는 유전자의 발현을 단백질 수준에서 제어할 수 있는 맞춤형 합성 조절 RNA를 3~4일내에 제작할 수 있는 원천기술을 개발하였다. 이렇게 설계된 합성 조절 RNA들은 미생물 게놈을 건드리지 않은 채 유전자 전달체에 삽입하여 제작되므로 여러 종류의 균주들과 여러 유전자들에 대하여 동시다발적인 대용량 실험이 가능하다. 또한, 다양한 균주에 적용시 고효율의 균주를 선별하거나, 유전자 발현조절 효율이 가장 좋은 목적 유전자를 선별할 수 있어 향후 조절 RNA 라이브러리(Library)까지 구축할 수 있다. 네이처 프로토콜스 편집자인 이탄 즈로토린스키(Eytan Zlotorynski) 박사는 “본 논문은 합성 sRNA를 디자인하고 응용하는데 필요한 상세한 프로토콜을 기술하고 있어 생명과학과 생명공학 분야 연구에 매우 널리 활용될 것이며, 특히 대사공학과 합성생물학 연구에서 유용할 것이다”라고 말했다. KAIST 산학협력단 배중면 단장은 “본 원천기술에 대해 이미 해외 기업들이 관심을 표명하며 기술이전계약을 제안하고 있으므로 2년 이내에 기술이전이 이루어질 것으로 본다“고 밝혔다.
2013.08.09
조회수 12966
합성 조절 RNA를 이용한 세포공장 기술 개발
- 네이쳐 바이오테크놀로지 온라인판 게재.“화학 산업을 대체할 생물 산업 발전의 새로운 전략으로 기대” - 우리 학교 생명화학공학과 이상엽 특훈교수팀이 합성 조절 RNA 기술을 활용하여 세포공장*을 효율적이고 대규모로 구현하게 하는 새로운 기술을 개발했다. * 세포공장(Biofactory) : 세포의 유전자를 조작하여 원하는 화합물을 대량으로 생산하도록 만드는 미생물 기반의 생산 시스템 화석연료 고갈과 석유화학제품 사용에 의한 환경오염 등 인류가 직면한 문제를 해결하기 위해 친환경적이고 지속가능한 바이오산업이 대두되고 있으며 특히 바이오에너지, 의약품, 친환경 소재 등을 생산할 수 있는 세포공장 개발기술이 전 세계적으로 주목받고 있다. 우수한 세포공장 개발을 위해서는 원하는 화합물을 생산하는 유전자 선별과 높은 생산 효율의 미생물을 찾는 과정이 병행되어야 하나 기존의 연구방식은 미생물의 유전자를 하나씩 조작하여 복잡하고 많은 시간이 소요되는 문제가 있었다. 우리 학교 나도균 박사와 유승민 박사가 참여한 이상엽 특훈교수 연구팀은 위와 같은 기술적 한계를 극복하기 위해 합성 조절 RNA를 제작하고 이를 활용하는 새로운 기술을 개발하였다. 특히 합성 조절 RNA를 이용한 이 기술은 기존 방식과 달리 균주 특이성이 없어 수개월이 소요되던 실험을 수일로 단축시킬 수 있어 획기적이다. 연구팀은 합성 조절 RNA 기술을 활용하여 의약 화합물의 전구체로 사용되는 타이로신(tyrosine)*과 다양한 석유화학 제품에 활용되는 카다베린(cadaverine)** 생산에 도입하여 세계 최고의 수율로 생산(각 21.9g/L, 12.6g/L)하는 세포공장을 개발하는데 성공하였다. * 타이로신(tyrosine) : 스트레스를 다스리고 집중력 향상 효과가 있는 아미노산 ** 카다베린(cadaverine) : 폴리우레탄 등 다양한 석유화학 제품에 활용되는 기반물질 이상엽 교수는 “합성 조절 RNA기술로 다양한 물질을 생산하는 세포공장 개발이 활발해 질 것이며 석유에너지로 대표되는 화학 산업이 바이오 산업으로 변해 가는데 촉매제 역할을 할 것으로 기대된다”라고 연구 의의를 밝혔다.“ 이번 연구는 글로벌프론티어사업(지능형 바이오 시스템 설계 및 합성 연구단(단장 김선창))의 지원으로 수행되었으며 연구결과는 세계적 학술지인 네이처 바이오테크놀로지 온라인 판에 1월 20일 게재되었다.
2013.01.21
조회수 15696
이상엽 특훈교수, 중국과학원 명예교수 추대
이상엽 특훈교수 - 미생물 대사공학 분야 업적 인정받아 - 우리 학교 생명화학공학과 이상엽(생명과학기술대학 학장) 특훈교수가 중국과학원 미생물연구소 명예교수로 최근 추대됐다. 이상엽 교수는 대사공학과 시스템생물학, 합성생물학 등을 접목해 시스템대사공학을 창시하고, 이를 다양한 화학물질 생산 시스템 개발에 적용해 바이오연료, 친환경 화학물질의 생산 공정을 개발한 공로를 인정받았다. 이 교수는 지난 2012년 미국화학회 마빈존슨상, 미국 산업미생물생명공학회 찰스톰상을 받았으며, 세계경제포럼 산하 생명공학 글로벌 아젠다 카운슬 초대 의장으로 선임되는 등 생명공학분야 세계적인 리더로서 인정받고 있다. 한편, 1958년 창립된 중국과학원 산하 미생물연구소는 1000여명의 교직원과 학생이 미생물관련 순수과학과 응용연구를 수행하는 이 분야 세계 최대 연구소다.
2013.01.03
조회수 12494
이상엽 특훈교수, 찰스톰상 수상
우리 학교 생명화학공학과 이상엽(생명과학기술대학 학장) 특훈교수가 미국 산업미생물생명공학회에서 수여하는 ‘2012 찰스톰상(Charles Thom Award)’을 받는다. 이 교수는 화석원료로부터 만들어지는 다양한 화학물질을 미생물의 시스템대사공학을 통해 효율적으로 생산하는 제반기술을 개발하고, 이를 이용해 숙신산, 폴리에스터, 나일론 원료, 알코올, 다이올, 바이오연료 등의 효율적인 생산을 위한 산업균주를 개발한 공로를 인정받아 수상자로 선정됐다. 찰스톰상은 미국 산업미생물생명공학회 주관 산업미생물 및 생명공학 분야에서 전 세계적으로 가장 탁월한 업적을 이룬 연구자를 매년 한명씩 선정해 주는 상으로 1967년 제정됐다. 대상자가 없는 해에는 상을 수여하지 않기도 한 것이 특징인 이 상은 작년까지 40명이 수상했으며, 이상엽 특훈교수는 41번째 수상자로 이름을 올리게 되는데 우리나라에서는 처음이다. 역대 수상자들로는 세계 산업미생물 및 생명공학계의 대부 아놀드 드메인, 데이비드 펄만, 아더 험프리, 테루히코 베뿌 등이 있다. 이 교수는 오는 8월 12일부터 16일까지 미국 워싱턴DC에서 열리는 미국산업미생물생명공학회 연례 학술총회에서 ‘천연 및 비천연 화학물질의 바이오 기반 생산을 위한 전략’을 주제로 찰스톰상 기념강연을 할 예정이다.
2012.07.03
조회수 9675
이상엽 특훈교수, 아시아 첫 ‘마빈존슨상’ 수상
우리 학교 생명화학공학과 이상엽(48, 생명과학기술대학 학장) 특훈교수가 아시아인으로는 최초로 미국화학회(American Chemical Society)에서 수여하는 ‘2012 마빈존슨상 (Marvin J. Johnson Award)’을 수상한다. 시상식은 27일 미국 샌디에고에서 열리는 미국화학회 연례 학술총회에서 갖는다. 미국화학회가 1978년 제정한 마빈존슨상은 미생물 및 생명화학공학분야에서 전 세계적으로 가장 탁월한 업적을 이룬 연구자를 매년 한명씩 선정해 주는 상으로 수상자는 미국화학회 연례학술총회에서 수상기념 강연을 하게 된다. 역대 수상자들로는 세계 생물화학공학계의 아버지들로 평가되는 故 데이비드 펄만, 故 제임스 베일리, MIT 다니엘 왕 교수 등이 있으며, 아시아에서는 이상엽 교수가 처음이다. 이 교수는 시스템대사공학 분야를 창시해 미생물의 대사회로를 시스템 수준에서 조작하고 다양한 원유 유래 화학물질을 바이오기반 친환경적으로 만드는 연구에서 세계적인 업적을 내고 있다. 아울러 아미노산, 폴리에스터 및 그 원료, 나일론 원료, 바이오연료 등의 효율적인 생산을 위한 균주개발 전략을 개발한 공로로 올해 수상자로 선정됐다. 이 교수는 현재 교육과학기술부 시스템생물학 연구개발사업, 글로벌프론티어 바이오매스사업단 사업, 그리고 글로벌프론티어 지능형합성생물학 사업단에 참여해 화석원료로부터 생산되는 화학물질들을 재생 가능한 비식용 바이오매스로부터 생산하기 위한 기술을 개발 중이다. 최근에는 세계경제포럼의 미래기술 글로벌 아젠다 카운슬 의장으로 선임돼 ‘2012년 세계 10대 떠오르는 기술’을 발표하기도 했다. 이 교수는 27일 미국 샌디에고에서 열리는 미국화학회 연례 학술총회에서 ‘미생물 시스템대사공학’을 주제로 마빈존슨상 기념강연을 할 예정이다.
2012.03.07
조회수 12981
미래의 석유화학산업, 바이오 리파이너리 시대가 온다
- KAIST 이상엽 특훈교수팀, 생명공학동향지 표지논문 게재 - “바이오리파이너리”란 석유화학산업에서 원유의 정제를 통해 여러가지 제품을 생산하는 것과 같이, 해조류나 비식용생물자원과 같은 바이오매스(biomass)를 원료로 이용하여 여러 제품을 생산하고자 하는 개념이다. “시스템 대사공학”을 통해 바이오매스로부터 다양한 화학물질 및 제품을 효과적으로 생산할 수 있는 새로운 기법과 전망이 국내 연구진에 의해 제시되었다. 우리 학교 이상엽 특훈교수팀이 수행한 이번 연구는 교육과학기술부 글로벌프론티어사업 차세대 바이오매스연구단의 지원을 받아 수행되었다. ※ 특훈교수 : 한국과학기술원(KAIST)에서 세계적 수준의 연구업적과 교육성과를 이룬 교수에 부여하는 호칭 그동안 기후변화, 자원고갈 등의 문제를 해결하기 위한 방안으로 바이오리파이너리에 대한 연구가 학계를 중심으로 활발히 진행되어 왔다. 특히, 연구자들은 과거 20년간 발전되어온 대사공학을 중심으로 미생물을 활용한 바이오매스의 활용가능성을 높여왔다. 그러나 아직 바이오매스로부터 여러 가지 바이오화학물질 및 소재들을 생산하기 위해서는 이들을 생산하는 미생물의 성능을 획기적으로 개선해야하는데, 기존의 대사공학연구는 주로 직관적인 방법으로 진행되어 많은 노력과 시간이 필요한 한계가 있었다. 이교수팀은 이러한 한계를 극복하기 위해 대사공학을 중심으로 시스템생물학, 합성생물학, 진화공학을 융합한 “시스템 대사공학”이라는 새로운 기술체계를 확립했다. 시스템 대사공학은 세포 기반의 각종데이터를 통합하여 생리 상태를 다차원에서 규명하고, 이 정보를 바탕으로 맞춤형 대사조절을 함으로써 고효율 미생물 균주를 개발하는 기술이다. 시스템 대사공학을 활용할 경우, 미생물을 게놈수준에서 동시다발적으로 관찰 및 조작이 가능하여 미생물의 성능 개선을 위한 시간과 노력을 획기적으로 줄이고 그 활용 가능성을 극대화 할 수 있다. 본 논문의 제1저자인 이정욱 박사는 “시스템 대사공학을 통해 미생물의 성능을 획기적으로 향상시키는 기법을 최근의 연구흐름을 중심으로 전망하고 제시하였으며, 향후 바이오리파이너리 연구에 폭넓게 활용될 것으로 기대된다.“고 연구의 의의를 밝혔다. 연구 결과는 세계적 학술지인 ‘생명공학동향(Trends in Biotechnology)‘지 8월호 표지논문으로 선정되었다.
2011.07.27
조회수 13866
이상엽 특훈교수, 국제 산업미생물학회 개회 기조강연
- 2011년 암젠 기조강연자로 바이오기반 친환경 화학 산업에 관한 강연 - 우리 학교 생명화학공학과 이상엽 특훈교수가 오는 24일부터 28일까지 미국 뉴올리언즈에서 개최되는 ‘2011년 국제 산업미생물학회’의 암젠 개회 기조강연자로 초청받았다. 이 교수는 ‘미생물 시스템대사공학을 통한 바이오기반 화학물질 생산’을 주제로 강연한다. 이 학회에는 전세계 산업생명공학 분야 2천여명의 산학연 전문가들이 모인다. 이들은 재생 가능한 바이오매스로부터 화학물질, 연료, 고분자 등을 친환경적으로 만드는 방법에 대한 최신 연구동향을 발표한다. 암젠 기조강연은 산업생명공학분야에서 전세계 최고의 연구를 수행하고 있는 연구자를 초청해 연구 동향과 앞으로의 방향에 대한 개회 강연이다. 이에 앞서 이 교수는 지난 7월 20~21일 개최된 미국 에너지성 산하 공동바이오에너지연구소(Joint BioEnergy Institute)의 과학자문회의에 참석해 "바이오연료의 생산을 위한 대사공학"을 주제로 강연을 하기도 했다. KAIST 이상엽 교수는 시스템대사공학 분야를 창시한 세계적 석학이다. 미생물의 대사회로를 시스템 수준에서 조작해 숙신산, 폴리에스터, 바이오연료, 아미노산 등 다양한 화학물질을 바이오기반 친환경적으로 만드는 연구에서 세계적인 업적을 내고 있다. 현재 교육과학기술부 시스템생물학 연구개발사업과 글로벌프론티어 바이오매스 사업단 사업 과제를 통해 바이오화학 산업에 필수적인 대사공학 원천기술들을 개발 중이다.
2011.07.22
조회수 12038
이상엽교수 미국산업미생물공학회 펠로우 선정
우리학교는 생명화학공학과 이상엽(생명과학기술대학 학장, 바이오융합연구소 공동소장) 특훈교수가 미국 산업미생물공학회(Society for Industrial Microbiology) 2010년 펠로우(Fellow)로 선정됐다고 30일 밝혔다. 미국 산업미생물공학회는 미생물의 시스템대사공학 연구를 통해 바이오매스로부터 화학 및 물질생산에 기여하는 등 세계적 업적을 낸 이상엽 특훈교수를 2010년 유일한 펠로우로 선정했다. 이 학회는 1972년부터 매년 한 두명의 펠로우를 펠로우 어워드 수여를 통해 선정해 왔으며 이 교수는 60번째다. 1949년 창시된 61년 전통의 미국 산업미생물공학회는 전 세계 산업생명공학 관련 전문가들이 모여 바이오 기반 화학, 연료, 의약품 등의 생산에 필요한 연구를 다루는 학회다. 이 교수는 대사공학, 합성생물학, 시스템생물학을 융합해 시스템대사공학을 창시했다. 이를 바탕으로 바이오매스 기반의 친환경 화학공정을 개발하는 세계적인 전문가로 이번 달 17일 막을 내린 세계대사공학회의 의장이기도 하다. 한편, 이상엽 교수는 2006년 미국 미생물학술원(American Academy of Microbiology) 펠로우, 국내 최초로 2007년 사이언스誌를 발간하는 미국과학진흥협회(American Association for the Advancement of Science) 펠로우, 올해는 미국공학한림원(National Academy of Engineering) 외국회원에도 우리나라에서는 두 번째로 선정된 바 있다.
2010.06.30
조회수 15728
녹색성장을 위한 대사공학의 현재와 미래를 본다
-6.13∼17, 5일간 세계대사공학회 제주에서 개최- -전 세계 대사공학 최고 전문가 제주도에 총 집결--KAIST 이상엽 특훈교수 주관, 녹색성장 위한 산업바이오 핵심기술 총 망라- 기후변화와 자원부족 문제가 심각한 오늘날, 재생 가능한 바이오매스(Biomass)로부터 화학 및 물질을 생산하는 산업바이오텍(Industrial Biotechnology)의 중요성은 날로 높아지고 있다.산업바이오텍은 미생물을 이용해 유용물질들을 생산하게 하는 기술이다. 이를 성공적으로 적용하려면 미생물을 우리가 원하는 방향으로 개량해 생산성을 높이는 대사공학 기술이 필수적이다. 우리학교 이상엽(생명과학기술대학 학장, 바이오융합연구소 공동소장) 특훈교수가 주관해 “녹색성장을 위한 대사공학”이라는 주제로 열리는 제 8차 세계대사공학회가 제주도 국제컨벤션센터에서 오는 13일부터 17일까지 5일간에 걸쳐 개최된다고 12일 밝혔다. 이번 학회에서는 대사공학을 통한 바이오연료, 화학물질, 고분자, 의약품 생산에 관한 논문들과 대사공학 기초원천기술에 대한 논문들이 발표된다. 또한 KAIST 이상엽 특훈교수팀을 비롯한 총 47회의 세계적 석학 초청강연도 진행될 예정이다. 바이오리파이너리(Biorefinery)를 선도하는 세계 대표기업들의 성공사례들도 발표되는데, 미국 듀퐁사(DuPont) 바이오 총괄책임자 윌리암 프로빈박사(Dr.William Provine)의 “성공적 상업화를 위한 대사 및 공정공학” 등 실제 산업화된 기술들이 상세히 소개된다. 2년마다 개최되는 이 학회에서는 국제대사공학상을 수여한다. 올해 수상자는 30여 년간 클로스트리디아(Clostridia)의 대사공학을 연구해 바이오부탄올(Biobutanol) 생산 분야에서 세계를 선도해온, 미국 델라웨어주립대(University of Delaware) 테리 파푸차키스 교수(Dr. E. Terry Papoutsakis)다. 한편 이번 행사를 주관한 KAIST 이상엽 특훈교수는 2008년도 수상자였다. 국제대사공학상 이외에도 엄격한 심사를 통해 우수한 포스터논문들이 선정되어 수상된다. 국제대사공학회에서 수여하는 ‘최우수포스터논문상’, ‘젊은대사공학인상’ 외에도, 해외 저명학술지에서 수여하는 상들도 예정돼 있다. 청와대 김상협 미래비전비서관은 개막 기조연설에서 “한국의 녹색성장 전략”을 주제로 강연해 우리나라의 녹색성장 관련 리더십을 전 세계 전문가들에게 알린다. 또, 한국생명공학연구원 박영훈 원장의 학회 축하연설도 예정돼 있다. 김 비서관은 “재생 가능한 바이오매스로부터 지속가능한 방법으로 화학물질과 연료를 생산하는데 필요한 핵심기술인 대사공학의 국제학술대회가 한국에서 개최되는 것은 녹색성장이 전 세계의 화두인 지금 큰 의미가 있다”며, “전 세계에서 참석하는 대사공학 및 산업바이오텍 전문가들에게 한국의 녹색성장 관련 기술의 우수성을 알리는 좋은 기회가 될 것으로 생각한다.”고 말했다. 학회 대회장인 KAIST 이상엽 특훈교수는 “이 학회는 2년마다 개최되는 대사공학 분야 최고 국제 학술회의로 아시아에서는 우리나라가 최초로 개최하는 것”이라고 밝히면서, “ 아침부터 밤늦도록 이어지는 포스터세션까지 참석한 모든 전문가들과 학생들이 긴밀하게 함께하는 행사이기에, 이전에는 참석 인원수를 200-250명 정도로 제한해 왔다. 이번 학회는 참석 경쟁률이 치열해 최종 300여명을 선발했고, 우리나라에서 리더십을 발휘하고 있는 녹색성장을 주제로 개최하게 됐다는 점에서 큰 의의가 있다. 또 이번 학회의 성공적 개최를 위해 후원을 아끼지 않은 롯데재단, 코프코, GS칼텍스, 바이오니아, 미국에너지성, 미국과학재단, 대상, CJ제일제당, 제노마티카, 듀퐁 등 많은 기관들에 감사한다.”고 말했다. 한편, 본 학회는 교육과학기술부 시스템생물학사업단, 미생물프론티어사업단, WCU사업단, KAIST바이오융합연구소, 한국생물공학회가 미국의 국제공학학회(ECI)와 공동으로 운영한다. 프로그램 일정은 학회 웹사이트 참고 http://www.engconfintl.org/10ay.html ※보충자료 이번 국제학회에서 발표되는 총 47회의 초청강연 중에는 미국 공동에너지연구소 소장 제이 키슬링박사의 “합성 연료를 위한 합성생물학”, 미국 MIT 그렉 스테파노폴러스교수의 “재생 가능한 원료로부터 미생물 연료생산”, 스웨덴 찰머스 대학 옌스 닐슨교수의 “연료와 화학물질 생산을 위한 효모 공장”, 스위스 연방공대 마틴 푸세네거교수의 “고등생물 합성생물학”, 캘리포니아주립대 버나드 폴슨교수의 “게놈수준에서의 모델링과 응용”, 호주 퀸즈랜드대학 라스 닐슨교수의 “설탕 활용 대장균의 게놈 분석과 응용”, 최근 뉴스를 달군 크렉벤터연구소 다니엘 깁슨박사의 “인공 미생물 합성”, 일본 게이오대학 마사루 토미타교수의 “대사체와 그 응용” 등 현재 가장 중요한 연구분야에서의 최신 연구결과가 발표된다. 우리나라에서는 KAIST 이상엽특훈교수팀 박진환연구교수의 “아미노산 생산을 위한 대사공학”과 한국생명공학연구원 김지현박사의 “대장균 B의 게놈 분석과 응용” 논문 등이 있다. 바이오리파이너리를 선도하는 세계 대표기업들의 성공사례들도 발표가 되는데, 미국 듀퐁사 바이오 총괄 책임자인 윌리암 프로빈박사의 “성공적인 상업화를 위한 대사 및 공정공학”, 미국 제노마티카사 총괄 기술책임자 마크 버크박사의 “재생가능한 원료로부터 부탄다이올의 생산”, 프랑스 메타볼릭익스플로러사 프란시스 볼커박사의 “바이오 기반 프로판다이올 생산”, 미국 카길사 피코 수미넨박사의 “산업적 젖산생산 기술”, 미국 다니스코사 그렉 화이티드박사의 “바이오 고무생산”, 네덜란드 DSM사 로엘 보벤버그박사의 “곰팡이를 이용한 의약품의 효율적 생산” 등 실제 산업화된 기술들이 상세히 소개된다. 초청강연 이외에도 총 156편의 엄격한 심사를 거친 포스터 논문 발표가 있을 예정이며, 이들 포스터 중에서 심사위원들의 심사를 거친 우수 포스터논문들이 선정되어 상이 수여될 예정이다. 국제대사공학회에서 주는 최우수 포스터 논문상, 젊은 대사공학인상 뿐 아니라, 대사공학지, 바이오테크놀로지 바이오엔지니어링지, 바이오테크놀로지 저널 등 해외 저명 학술지에서 수여하는 상들도 예정돼 있다. 네이처케이컬바이올로지에서 주는 상은 이번 학회에 참석하는 선임편집자인 캐서린 굿맨이 수여한다. 프로그램 일정은 학회 웹사이트 참고 http://www.engconfintl.org/10ay.html
2010.06.12
조회수 22420
가상세포를 이용한 병원균의 약물표적 예측기술 개발
- 가상세포 시스템 활용한 새로운 항생제 개발에 큰 파급효과 기대 - 분자 바이오시스템(Molecular BioSystems)지 표지 논문으로 게재 생명화학공학과 이상엽(李相燁, 46세, LG화학 석좌교수, 생명과학기술대학 학장)특훈교수팀이 항생제에 내성을 가지는 병원성 미생물의 가상세포를 구축하고 이를 이용해 병원균의 성장을 효과적으로 억제할 수 있는 약물 표적을 예측하는 기술을 최근 개발했다. 김현욱(생명화학공학과 박사과정)연구원의 학위 논문연구로 수행한 이번 연구 결과는 유럽 화학 관련 학술단체 RSC(The Royal Society of Chemistry)에서 발간하는 분자 바이오시스템(Molecular BioSystems)지의 2월호 표지 논문으로 게재됐다. 예전에는 병원성 세균들을 항생제로 쉽게 치유할 수 있었지만 이제는 항생제의 오남용으로 인해서 병원균들은 항생제에 대한 내성을 가지게 됐으며, 따라서 한 번 감염이 되면 치유가 이전보다 쉽지 않다. 그 대표적인 병원균이 바로 아시네토박터 바우마니(Acinetobacter baumannaii)다. 본래 흙이나 물에서 쉽게 발견되는 이 미생물은 항생제에 내성을 갖지 않아 치료가 쉽고 건강한 사람은 잘 감염되지 않는 균이었다. 그러나 지난 10년 동안에 항생제에 내성을 갖는 슈퍼박테리아로 변했으며, 이라크 전쟁에 참전한 다수의 미군과 프랑스군도 이 균에 감염되면서 상처가 낫질 않아 많은 희생을 야기했다. 李 교수 연구팀은 아시네토박터 바우마니의 게놈과 전체적인 대사특성을 알아보기 위해 각종 데이터베이스에 산재해 있는 생물정보와 문헌정보를 컴퓨터에 입력, 분석, 디자인하여 가상세포를 구축하고, 다양한 네트워크 분석기법, 필수 대사반응 및 대사산물 분석 등 융합 방법론을 이용해 이 병원균의 성장을 효과적으로 차단할 수 있는 약물표적을 예측했다. 인간에게는 영향을 미치지 않으면서 병원균에게만 작용하는 최종 약물표적들이다. 필수 대사반응은 생명체가 대사활동을 정상적으로 하기 위하여 반드시 필요한 효소반응을 말하며, 필수 대사산물이란 생명체가 생존하기 위해 대사에 반드시 필요로 하는 화학물질로서 이들을 제거할 경우 이와 반응을 하는 효소들을 모두 억제되는 효과가 있다. 이 약물표적은 가상세포를 구성하고 있는 대사 유전자, 효소 반응, 신진대사들의 기능을 짧은 시간 안에 빠짐없이 체계적으로 검토해 예측함으로써 그 신뢰성을 높였다. 이번 연구 결과는 최근 많은 관심을 받고 있는 시스템 생물학 연구기법을 이용하여, 처음으로 필수 대사물질의 체계적인 발굴을 통해 효과적인 약물표적을 찾고, 나아가 새로운 항생제 개발의 가능성을 열었다는 점에서 높이 평가받고 있다. 또한 병원균에 의한 감염 현상과 신약개발에 큰 공헌을 할 것으로 기대를 모으고 있다. 李 교수는 “현재 수많은 생물의 게놈 정보가 쏟아지고 있지만 이것을 실질적으로 유용한 정보로 전환하는 데에는 아직도 많은 어려움이 있다. 아시네토박토 바우마니의 게놈 정보로부터 의학적으로 실용성이 있는 정보를 재생산했다는 점에서 의의가 있다”며 “특히 이 병원균의 가상세포 개발은 특정 환경에서 필수 유전자나 효소 반응에 대한 대량의 새로운 생물정보를 제공할 수 있는 계기를 마련했다.”고 말했다. 李 교수팀은 교육과학기술부 시스템 생물학 연구개발사업의 지원으로 이번 연구를 수행했으며, 다양한 병원성 균주의 가상세포 개발 및 항생제 약물표적 예측 방법을 특허 출원했다. ▣ 용어설명 ○ 약물표적 : 차단 시 병원성 미생물의 성장을 효과적으로 억제할 수 있는 단백질 효소 및 그와 관련된 화학물질 ▣ (자료1) 가상세포. (자료2) 가상세포로부터 필수대사산물을 예측한 후에, 병원균을 가장 효과적으로 죽일 수 있으면서 동시에 인간에게는 영향을 미치지 않는 약물표적만을 추리는 과정
2010.02.18
조회수 15573
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
>
다음 페이지
>>
마지막 페이지 5