-
‘드림워커’, MIT, CMU를 제치고 1등하다
최근 별도의 시각이나 촉각 센서의 도움 없이 계단도 성큼 오를 수 있는 보행로봇 제어기인‘드림워크(DreamWaQ)’를 장착한 KAIST 자율보행로봇이 국제 사족보행 로봇 경진대회에서 1등을 하여 화제다.
전기및전자공학부 명현 교수 연구팀(미래도시 로봇 연구실)이 ‘23. 5. 29 ~ 6.2 영국 런던에서 개최된 로봇 분야 최대 규모 학술대회인 2023 국제 로봇 및 자동화 학술대회(IEEE International Conference on Robotics and Automation, ICRA)에서 주최한 사족로봇 자율보행 경진대회(Quadruped Robot Challenge, QRC)에서 현지 시간 6월 1일 압도적인 점수 차를 보이며 우승을 거두었다고 밝혔다.
명현 교수 연구팀은 독자적으로 개발한 단위 기술들을 체계적으로 통합 및 최적화하여, 전 세계에서 한국을 포함한 미국, 홍콩, 이탈리아, 프랑스 등 총 11개 팀이 참여하고 7개의 팀이 본선에 진출한 QRC에서 성공적인 자율보행을 선보였으며 최종 6개의 팀이 참여한 결승전에서 총점 246점을 거두었다. 이는 60점을 획득한 메사추세츠 공과대학교(MIT)의 4배 이상으로, 사실상 압도적인 차이로 따돌리며 우승을 거머쥐었다 (1위: KAIST, Team DreamSTEP, 2위: MIT, 3위: 카네기멜론 대학(CMU)). KAIST 팀은 소형 사족 보행 로봇을 사용하였으나 가장 빠르게 움직이며 가장 높은 점수를 획득하였다는 점도 주목할만하다. 결승전에서 원격 수동 조작을 위주로 한 팀들이 평균 약 49분의 완주 시간을 기록한 반면, KAIST 팀은 자율 보행 위주로 41분 52초의 완주 시간을 기록하였다 (2위 MIT는 원격조작으로 45분 32초). 동 대회에 우승한 본 연구팀은 약 2,000만원 상당의 보행 로봇을 수여받았고, 약 300만원 상당의 보조금을 받을 예정이다.
조종자가 조종기 조작을 통해 로봇을 쉽게 조종할 수 있지만, 로봇이 가시거리를 벗어나면 별도의 통신을 통해 수신된 센서 정보를 이용해 로봇의 상태를 사람이 추측하며 로봇을 조종해야 한다. 하지만, 통신 지연이나 두절로 인해 센서 정보 취득이 원활하지 못한 경우가 발생할 수 있고, 이럴 경우 제어가 어렵다는 단점이 존재한다.
이러한 문제점을 해결해 주는 것이 다름 아닌 자율보행 기술이다. 자율보행 시스템 구축을 위해서는 제어기뿐 아니라, 로봇의 위치와 주변 환경을 추정하는 기술과 이동 경로를 계획하는 기술의 개발도 함께 요구된다. 이러한 여러 단위 기술들의 개발이 필수적이기에, 세계적으로도 완성도 높은 자율보행 기술을 확보한 연구팀은 손에 꼽힐 정도이다.
연구팀은 다양한 환경에서의 자율보행을 위하여 카메라, 3차원 라이다(LiDAR) 센서, 관성 센서(IMU), 관절 센서로부터 획득된 정보를 모두 융합하여 사용하였다. 많은 센서를 사용했음에도 불구하고, 미니컴퓨터 하나에서 강인하고 정확한 위치 추정뿐 아니라 주변 환경 인지와 경로 계획까지 실시간으로 진행될 수 있도록 효율적인 시스템을 구축하였다.
로봇 주변의 지형 지도를 작성하는 기술은 고가의 LiDAR 센서에만 의존하지 않고, 상대적으로 저렴한 깊이 카메라로 대체할 수 있다. 추정된 로봇 위치의 주변 지형 지도를 빈틈없이 매끄럽게 작성하고, 이 지도를 활용해 안전한 지형을 스스로 판단해 보행할 수 있도록 적합한 경로를 계획한다. 드림워크가 탑재된 로봇이 극복할 수 있는 최대 단차와 로봇의 크기를 고려하여 경로를 계획하여 로봇이 넘어지는 상황은 최소화한다. 그러나 혹여 보행 중 넘어질 때도, 자동으로 다시 일어나 임무를 수행할 수 있도록 하나 강화학습 기반의 재회복 (Fall recovery) 기술도 자체 개발하여 탑재하였다.
명현 교수는 “ 동 경진대회에서 사용된 제어기인 드림워크 뿐 아니라, 로봇 주변의 환경을 인지하고 적절한 경로를 찾을 수 있도록 하는 기술 모두 본 연구팀이 독자적으로 개발한 기술로, 국내 로봇 산업 경쟁력 제고에 이바지할 것으로 기대된다”고 전했다.
한편, 이번 연구는 산업통상자원부 로봇산업핵심기술개발 사업의 지원을 받아 수행되었다. (과제명: 동적, 비정형 환경에서의 보행 로봇의 자율이동을 위한 이동지능 SW 개발 및 실현장 적용)
KAIST DreamSTEP 팀의 구성원:
명현 교수 (지도교수), 유병호 박사과정 (팀장), 이 마데 아스윈 나렌드라(I Made Aswin Nahrendra) 박사과정, 김예은 박사과정, 오민호 박사과정, 마심 케빈 크리스티안센(Marsim Kevin Christiansen) 석박사통합과정, 이현우 박사과정, 이승재 석사과정, 이동규 석사과정
2023.06.07
조회수 485
-
기계공학과 권동수 명예교수, IEEE/ICRA 2023 특별 공로상 수상
우리 대학 기계공학과 명예교수이자, ㈜로엔서지컬 대표이사인 권동수 교수가 6월 1일 런던에서 개최된 국제로봇 & 자동화 컨퍼런스 ICRA 2023(IEEE/International Conference on Robotics and Automation)’에서 IEEE 로봇 자동화학회 RAS (Robotics and Automation Society) 위원회 및 학회에서의 지속적인 활동과 과학 분야에서의 탁월한 리더쉽을 인정받아 특별 공로상(Distinguished Service Award)를 수상하였다고 밝혔다.
이번에 권 교수가 수상한 ICRA 특별 공로상은 IEEE RAS 위원회 발전을 위하여 기여한 구성원 개인의 공로를 치하하는 상으로, 권 교수는 지난 2014년 세계에서 단 여섯 명을 뽑는 IEEE 운영위원회 선거에서 투표를 통해 당선된 첫 한국인이다. 권 교수는 당선 이래 로봇자동화와 관련된 기술표준을 포함해 48개의 기술위원회 활동과 각국 IEEE RAS 챕터활동, 전 세계에서 열리는 다양한 IEEE 로봇분야 학회 관련사항을 최종 결정하는 이사를 역임하며 국내 로봇분야 연구개발 성과의 국제표준 채택 기회를 늘리는 등 국내 로봇산업의 국제화 초석을 다져왔다.
또한, 권 교수는 2022년 세계적인 로봇 국제학술대회인 IEEE IROS(IEEE/RJS International Conference on Intelligent Robots and Systems)에서 27년간 KAIST 연구개발을 바탕으로 창업한 ㈜로엔서지컬의 신장결석 제거 로봇 ‘자메닉스(Zamenix™)와 유연수술로봇 플랫폼에 관한 혁신적 연구 업적을 인정 받아 “IROS 하라시마 혁신기술상(Harashima Award for Innovative Technologies)”을 수상한 바 있다.
권동수 명예교수는 학술연구 · 개발에 그치지 않고, “로엔서지컬 제품의 국내 의료시장 판매를 시작으로 제품의 국제 규정 준수 및 인증을 통해 안전성, 효능, 성능 등에 대한 품질을 확보하고, 글로벌 기업과 협력하여 세계의료시장 유통망을 구축해 갈 것“이라는 계획을 밝혀 앞으로의 귀추가 주목된다.
2023.06.05
조회수 353
-
드림워커, 안 보고도 계단을 성큼성큼 걷다
연기가 자욱해 앞이 안보이는 재난 상황에서 별도의 시각이나 촉각 센서의 도움 없이 계단을 오르내리고 나무뿌리와 같은 울퉁불퉁한 환경 등에서 넘어지지 않고 움직이는 사족보행 로봇 기술이 국내 연구진에 의해 개발됐다.
우리 대학 전기및전자공학부 명현 교수 연구팀(미래도시 로봇연구실)이 다양한 비정형 환경에서도 강인한 `블라인드 보행(blind locomotion)'을 가능케 하는 보행 로봇 제어 기술을 개발했다고 29일 밝혔다.
연구팀은 사람이 수면 중 깨어서 깜깜한 상태에서 화장실을 갈 때 시각적인 도움이 거의 없이 보행이 가능한 것처럼, 블라인드 보행이 가능하다고 해서 붙여진 ‘드림워크(DreamWaQ)’기술을 개발하였고 이 기술이 적용된 로봇을 ‘드림워커(DreamWaQer)’라고 명명했다. 즉 이 기술을 탑재하면 다양한 형태의 사족보행 로봇 드림워커를 만들어낼 수 있게 되는 것이다.
기존 보행 로봇 제어기는 기구학 또는 동역학 모델을 기반으로 한다. 이를 모델 기반 제어 방식이라고 표현하는데, 특히 야지와 같은 비정형 환경에서 안정적인 보행을 하기 위해서는 모델의 특징 정보를 더욱 빠르게 얻을 수 있어야 한다. 그러나 이는 주변 환경의 인지 능력에 많이 의존하는 모습을 보여 왔다.
이에 비해, 명현 교수 연구팀이 개발한 인공지능 학습 방법 중 하나인 심층 강화학습 기반의 제어기는 시뮬레이터로부터 얻어진 다양한 환경의 데이터를 통해 보행 로봇의 각 모터에 적절한 제어 명령을 빠르게 계산해 줄 수 있다. 시뮬레이션에서 학습된 제어기가 실제 로봇에서 잘 작동하려면 별도의 튜닝 과정이 필요했다면, 연구팀이 개발한 제어기는 별도의 튜닝을 요구하지 않는다는 장점도 있어 다양한 보행 로봇에 쉽게 적용될 수 있을 것으로 기대된다.
연구팀이 개발한 제어기인 드림워크는 크게 지면과 로봇의 정보를 추정하는 상황(context) 추정 네트워크와 제어 명령을 산출하는 정책(policy) 네트워크로 구성된다. 상황추정 네트워크는 관성 정보와 관절 정보들을 통해 암시적으로 지면의 정보를, 명시적으로 로봇의 상태를 추정한다. 이 정보는 정책 네트워크에 입력돼 최적의 제어 명령을 산출하는 데 사용된다. 두 네트워크는 시뮬레이션에서 함께 학습된다.
상황추정 네트워크는 지도학습을 통해 학습되는 반면, 정책 네트워크는 심층 강화학습 방법론인 행동자-비평자(actor-critic) 방식을 통해 학습된다. 행동자 네트워크는 주변 지형 정보를 오직 암시적으로 추정할 수 있다. 시뮬레이션에서는 주변 지형 정보를 알 수 있는데, 지형 정보를 알고 있는 비평자 네트워크가 행동자 네트워크의 정책을 평가한다.
이 모든 학습 과정에는 단 1시간 정도만 소요되며, 실제 로봇에는 학습된 행동자 네트워크만 탑재된다. 주변 지형을 보지 않고도, 오직 로봇 내부의 관성 센서(IMU)와 관절 각도의 측정치를 활용해 시뮬레이션에서 학습한 다양한 환경 중 어느 환경과 유사한지 상상하는 과정을 거친다. 갑자기 계단과 같은 단차를 맞이하는 경우, 발이 단차에 닿기 전까지는 알 수 없지만 발이 닿는 순간 빠르게 지형 정보를 상상한다. 그리고 이렇게 추측된 지형 정보에 알맞은 제어 명령을 각 모터에 전달해 재빠른 적응 보행이 가능하다.
드림워커(DreamWaQer) 로봇은 실험실 환경뿐 아니라, 연석과 과속방지턱이 많은 대학 캠퍼스 환경, 나무뿌리와 자갈이 많은 야지 환경 등에서 보행 시 지면으로부터 몸체까지 높이의 3분의 2 (2/3) 정도의 계단 등을 극복함으로써 강인한 성능을 입증했다. 또한 환경과 무관하게, 0.3m/s의 느린 속도부터 1.0m/s의 다소 빠른 속도까지도 안정적인 보행이 가능함을 연구팀은 확인했다.
이번 연구 결과는 이 마데 아스윈 나렌드라(I Made Aswin Nahrendra) 박사과정이 제1 저자로, 유병호 박사과정이 공동 저자로 참여했으며, 오는 5월 말 영국 런던에서 개최되는 로보틱스 분야의 세계 최고 권위 학회인 ICRA(IEEE International Conference on Robotics and Automation)에 채택되어 발표될 예정이다. (논문명: DreamWaQ: Learning Robust Quadrupedal Locomotion With Implicit Terrain Imagination via Deep Reinforcement Learning)
개발된 드림워크를 탑재한 보행 로봇 드림워커의 구동 및 보행 영상은 아래 주소에서 확인할 수 있다.
메인 영상: https://youtu.be/JC1_bnTxPiQ
쿠키 영상: https://youtu.be/mhUUZVbeDA0
한편, 이번 연구는 산업통상자원부 로봇산업핵심기술개발 사업의 지원을 받아 수행되었다. (과제명: 동적, 비정형 환경에서의 보행 로봇의 자율이동을 위한 이동지능 SW 개발 및 실현장 적용)
2023.03.29
조회수 3194
-
‘라이보’ 로봇, 해변을 거침없이 달리다
우리 대학 기계공학과 황보제민 교수 연구팀이 모래와 같이 변형하는 지형에서도 민첩하고 견고하게 보행할 수 있는 사족 로봇 제어기술을 개발했다고 26일 밝혔다.
황보 교수 연구팀은 모래와 같은 입상 물질로 이루어진 지반에서 로봇 보행체가 받는 힘을 모델링하고, 이를 사족 로봇에 시뮬레이션하는 기술을 개발했다. 또한, 사전 정보 없이도 다양한 지반 종류에 스스로 적응해가며 보행하기에 적합한 인공신경망 구조를 도입해 강화학습에 적용했다. 학습된 신경망 제어기는 해변 모래사장에서의 고속 이동과 에어 매트리스 위에서의 회전을 선보이는 등 변화하는 지형에서의 견고성을 입증해 사족 보행 로봇이 적용될 수 있는 영역을 넓힐 것으로 기대된다.
기계공학과 최수영 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)' 1월 8권 74호에 출판됐다. (논문명 : Learning quadrupedal locomotion on deformable terrain)
강화학습은 임의의 상황에서 여러 행동이 초래하는 결과들의 데이터를 수집하고 이를 사용해 임무를 수행하는 기계를 만드는 학습 방법이다. 이때 필요한 데이터의 양이 많아 실제 환경의 물리 현상을 근사하는 시뮬레이션으로 빠르게 데이터를 모으는 방법이 널리 사용되고 있다.
특히 보행 로봇 분야에서 학습 기반 제어기들은 시뮬레이션에서 수집한 데이터를 통해서 학습된 이후 실제 환경에 적용돼 다양한 지형에서 보행 제어를 성공적으로 수행해 온 바 있다.
다만 학습한 시뮬레이션 환경과 실제 마주친 환경이 다른 경우 학습 기반 제어기의 성능은 급격히 감소하기 때문에, 데이터 수집 단계에서 실제와 유사한 환경을 구현하는 것이 중요하다. 따라서, 변형하는 지형을 극복하는 학습 기반 제어기를 만들기 위해서는 시뮬레이터는 유사한 접촉 경험을 제공해야 한다.
연구팀은 기존 연구에서 밝혀진 입상 매체의 추가 질량 효과를 고려하는 지반 반력 모델을 기반으로 보행체의 운동 역학으로부터 접촉에서 발생하는 힘을 예측하는 접촉 모델을 정의했다.
나아가 시간 단계마다 하나 혹은 여러 개의 접촉에서 발생하는 힘을 풀이함으로써 효율적으로 변형하는 지형을 시뮬레이션했다.
연구팀은 또한 로봇의 센서에서 나오는 시계열 데이터를 분석하는 순환 신경망을 사용함으로써 암시적으로 지반 특성을 예측하는 인공신경망 구조를 도입했다.
학습이 완료된 제어기는 연구팀이 직접 제작한 로봇 `라이보'에 탑재돼 로봇의 발이 완전히 모래에 잠기는 해변 모래사장에서 최대 3.03 m/s의 고속 보행을 선보였으며, 추가 작업 없이 풀밭, 육상 트랙, 단단한 땅에 적용됐을 때도 지반 특성에 적응해 안정하게 주행할 수 있었다.
또한, 에어 매트리스에서 1.54 rad/s(초당 약 90°)의 회전을 안정적으로 수행했으며 갑작스럽게 지형이 부드러워지는 환경도 극복하며 빠른 적응력을 입증했다.
연구팀은 지면을 강체로 간주한 제어기와의 비교를 통해 학습 간 적합한 접촉 경험을 제공하는 것의 중요성을 드러냈으며, 제안한 순환 신경망이 지반 성질에 따라 제어기의 보행 방식을 수정한다는 것을 입증했다.
연구팀이 개발한 시뮬레이션과 학습 방법론은 다양한 보행 로봇이 극복할 수 있는 지형의 범위를 넓힘으로써 로봇이 실제적 임무를 수행하는 데에 이바지할 수 있을 것으로 기대된다.
제1 저자인 최수영 박사과정은 "학습 기반 제어기에 실제의 변형하는 지반과 가까운 접촉 경험을 제공하는 것이 변형하는 지형에 적용하는 데 필수적이라는 것을 보였다ˮ 라며 "제시된 제어기는 지형에 대한 사전 정보 없이 기용될 수 있어 다양한 로봇 보행 연구에 접목될 수 있다ˮ 라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2023.01.26
조회수 2887
-
세계 최고 빠른 속도로 철제 벽면과 천장을 보행하는 사족 로봇 개발
우리 대학 기계공학과 박해원 교수 연구팀이 철로 이뤄진 벽면과 천장을 빠른 속도로 이동할 수 있는 사족 보행 로봇을 개발했다고 26일 밝혔다.
박 교수 연구팀은 이를 위해 전자기력을 온-오프(on-off)할 수 있는 영전자석(Electropermanent Magnet)과 고무와 같은 탄성체에 철가루와 같은 자기응답인자를 섞어 만든 탄성체인 자기유변탄성체(Magneto-Rheological Elastomer)를 이용해 자석의 접착력을 빠르게 끄거나 켤 수 있으면서도 평탄하지 않은 표면에서 높은 접착력을 지니는 발바닥을 제작해, 연구실에서 자체 제작한 소형 사족 보행 로봇에 장착했다. 이러한 보행 로봇은 배, 교량, 송전탑, 대형 저장고, 건설 현장 등 철로 이루어진 대형 구조물에 점검, 수리, 보수 임무를 수행하는 등 폭넓게 이용될 수 있을 것으로 기대된다.
기계공학과의 홍승우, 엄용 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)' 12월호에 표지를 장식하는 논문으로 출판됐다. (논문명 : Agile and Versatile Climbing on Ferromagnetic Surfaces with a Quadrupedal Robot)
기존의 벽면을 오르는 등반 로봇은 바퀴나 무한궤도를 이용하기 때문에, 단차나 요철이 있는 표면에서는 이동성이 제한되는 단점을 가졌다. 이에 반해 등반용 보행로봇은 장애물 지형에서의 향상된 이동성을 기대할 수 있으나, 이동 속도가 현저히 느리거나 다양한 움직임을 수행할 수 없다는 단점이 있었다.
보행 로봇의 빠른 이동을 가능하게 하려면 발바닥은 흡착력이 강하면서도 흡착력을 빠르게 온-오프 스위칭할 수 있어야 한다. 또한, 거칠거나 요철이 있는 표면에서도 흡착력의 유지가 필요하다.
연구팀은 이러한 문제를 해결하기 위해 영전자석과 자기유변탄성체를 보행 로봇의 발바닥 디자인에 최초로 이용했다. 영전자석은 짧은 시간의 전류 펄스로 전자기력을 온-오프할 수 있는 자석으로 일반적인 전자석과 달리 자기력의 유지를 위해 에너지가 들지 않는다는 장점이 있다. 연구팀은 사각형 구조 배열의 새로운 영전자석을 제안해, 기존 영전자석과 비교해 스위칭에 필요한 전압을 현저하게 낮추면서도 보다 빠른 스위칭이 가능하게 했다.
또한, 연구팀은 자기유변탄성체를 발바닥에 씌어, 발바닥의 자기력을 현저히 떨어트리지 않으면서도 마찰력을 높일 수 있었다. 이렇게 제안한 발바닥은 무게는 169그램(g)에 불과하지만 약 *535뉴턴(N)의 수직 흡착력, 445뉴턴(N)의 마찰력을 제공해 무게 8킬로그램(kg)의 사족보행로봇에 충분한 흡착력을 제공할 수 있음을 확인했다.
*535N을 kg으로 환산하면 54.5kg, 445N을 kg으로 환산하면 45.4kg이다. 즉, 수직 방향으로 최대 54.5kg, 수평 방향으로는 최대 45.4kg 정도의 외력이 가해져도 (혹은 이에 해당하는 무게 추가 매달려도) 발바닥이 철판에서 떨어지지 않는다.
연구팀이 제작한 사족 보행 로봇은 초속 70센티미터(cm)의 속도로 직벽을 고속 등반하였고, 최대 초속 50센티미터(cm)의 속도로 천장에 거꾸로 매달려 보행할 수 있었다. 이는 보행형 등반 로봇으로는 세계 최고의 속도다. 또한, 연구팀은 페인트가 칠해지고, 먼지, 녹으로 더러워진 물탱크의 표면에서도 로봇이 최대 35센티미터(cm)의 속도로 올라갈 수 있음을 보여, 실제 환경에서의 로봇의 성능을 입증했다. 로봇은 빠른 속도를 보여줄 뿐 아니라, 바닥에서 벽으로, 벽에서 천장으로 전환이 가능하고, 벽에서 돌출돼 있는 5센티미터(cm) 높이의 장애물도 무난히 극복할 수 있음을 실험적으로 보였다.
연구팀이 개발한 새로운 등반 사족 보행 로봇은 배, 교량, 송전탑, 송유관, 대형 저장고, 건설 현장 등 철로 이루어진 대형 구조물의 점검, 수리, 보수에 폭넓게 활용될 수 있을 것으로 기대된다. 특히 이러한 곳에서의 작업은 추락, 질식 등의 심각한 위험성이 존재하고 있어, 자동화의 필요성이 시급한 곳이다.
공동 제1 저자인 기계공학과 엄용 박사과정은 "영전자석과 자기유변탄성체으로 구성된 발바닥과 등반에 적합한 비선형 모델 예측제어기를 이용해, 지면뿐만 아니라 벽과 천장을 포함한 다양한 환경에서도 보행 로봇이 민첩하게 움직일 수 있음을 보였고 이는 보행 로봇의 이동성과 작업 공간을 2D에서 3D로 확장하는 초석이 될 것이다ˮ라며 “이러한 로봇은 조선소와 같은 철제 구조물에서 위험하고 힘든 작업을 수행하는 데 활발히 사용될 수 있을 것이다ˮ라고 말했다.
한편 이번 연구는 한국연구재단 개인기초연구사업(중견)과 한국조선해양의 지원을 받아 수행됐다.
2022.12.26
조회수 3504
-
인간 근육보다 17배 강한 헤라클래스 인공 근육 개발
우리 대학 신소재공학과 김상욱 교수 연구팀이 부산대 안석균 교수 연구팀과 공동 연구를 통해 그래핀-액정 복합섬유를 이용한 새로운 인공 근육을 개발하는 데 성공했다고 5일 밝혔다. 이 인공 근육은 현재까지 과학계에 보고된 것 중에서 인간 근육과 가장 유사하면서도 최대 17배 강한 힘을 보이는 것으로 밝혀졌다.
동물의 근육은 신경 자극에 의해 그 형태가 변하면서 기계적인 운동을 일으키는 것으로 알려져 있다. 로봇이나 인공장기 등 다양한 분야에서 동물근육과 유사한 운동을 일으키기 위한 기술들이 개발돼왔으나, 지금까지는 주로 기계장치에 의존한 것들이 대부분이다.
최근에는 유연성을 가지는 신소재를 이용해 생명체의 근육같이 유연하면서도 기계적 운동을 일으킬 수 있는 인공 근육들이 연구되고 있다. 그러나 이들 대부분이 일으키는 운동의 범위가 동물 근육보다 제한되고 강한 운동을 일으키기 위해서는 마치 시계태엽을 감듯이 부가적인 에너지 저장과정을 거쳐야만 하는 문제점이 있다.
김교수 연구팀이 개발한 신소재는 온도변화에 따라 동물 근육과 같이 크게 수축을 일으키는 액정물질에 고품질의 그래핀을 적용함으로써 레이저를 이용한 원격제어가 가능하며 인간 근육의 작업 수행능력(17배)과 출력밀도(6배)를 크게 능가하는 운동능력을 구현했다. 연구팀은 실제로 인공 근육을 이용해 1 킬로그램(kg) 짜리 아령을 들어올리는 데 성공하기도 했으며, 이를 이용한 인공 자벌레는 살아있는 자벌레보다 3배나 빠른 속도로 움직이는 기록을 달성하기도 했다.
연구를 주도한 신소재 분야 석학인 KAIST 김상욱 교수는 "최근 세계적으로 활발히 개발되고 있는 인공 근육들은 비록 한두 가지 물성이 매우 뛰어난 경우는 있으나 실용적인 인공 근육으로 작동하는 데 필요한 다양한 물성들을 골고루 갖춘 경우는 없었다ˮ며 "이번 연구를 시발점으로 실용성 있는 인공 근육 소재가 로봇 산업 및 다양한 웨어러블 장치에 활용할 수 있으며 4차 산업 혁명에 따른 비대면 과학기술에서도 크게 이바지할 수 있을 것이다ˮ라고 말했다.
신소재공학과 김인호 박사가 제1 저자로 참여한 이번 연구는 이러한 성과를 인정받아 저명한 영국의 과학 학술지 네이처 나노테크놀로지(Nature Nanotechnology)에 지난 10월 27일자로 출간됐었으며, 해당 학술지의 표지 논문으로 선정됐다. 또한 관련 기술에 대한 특허를 국내외에 출원하여 KAIST 교원창업 기업인 ㈜소재창조를 통해 상용화를 진행할 계획이다.
신소재공학과 강지형 교수, 기계공학과 유승화 교수, 부산대학교 고분자공학과 안석균 교수가 공동 연구로 참여한 이번 연구는 한국연구재단의 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 기초연구 사업의 지원을 받아 수행됐다.
2022.12.05
조회수 2519
-
인간 피부의 압력 감지 능력을 뛰어넘는 로봇용 전자 피부 개발
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 인간 피부의 압력 감지 능력을 뛰어넘는 고감도 및 광범위 압력 측정이 가능한 로봇용 전자 피부를 개발했다고 27일 밝혔다.
연구팀이 개발한 전자 피부는 인간 피부에 비해 더 높은 민감도와 더 넓은 압력 측정 범위를 보여 최근 각광받는 로봇 산업, 헬스케어 산업, 증강 현실 등 다양한 분야에 폭넓게 적용될 수 있을 것으로 기대된다.
전기및전자공학부 이시목 박사과정과 변상혁 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머터리얼즈(Advanced Materials)' 온라인 버전에 10월 3일 字 출판됐다. (논문명 : Beyond the Human Touch Perception: Adaptive Robotic Skin Based on Gallium Microgranules for Pressure Sensory Augmentation)
인간 피부의 촉각 인지 능력을 모방하는 전자 피부는 원격으로 감도 및 외압 측정이 가능해 메타버스, 로봇 공학, 의료 기기 등 다양한 산업에 활용할 수 있다. 이로 인해 전자 피부가 많은 주목을 받고 있으며, 특히 전자 피부의 핵심 기술인 압력 센서의 민감도를 높이기 위해 많은 연구가 진행됐다.
하지만 개발된 고감도 압력 센서는 압력 감지 범위가 좁다는 단점을 가진다. 이를 해결하기 위해 광범위 압력 감지 센서가 등장했으나 기존 고감도 센서들과 비교해 현저히 낮은 민감도를 보였다. 이에 따라 사용자들은 상황과 목적에 맞춰 별개의 센서를 사용해야 했으며 이 과정에서 측정의 정확도가 떨어지고 번거롭다는 문제가 발생했다.
연구팀은 갈륨(Gallium)과 중합체(Polymer)를 합성해 온도에 따라 민감도와 압력 감지 범위를 변화시킬 수 있는 가변 강성 압력 센서를 개발했다. 개발된 압력 센서는 사용자가 상황과 목적에 맞게 고감도 감지 모드와 광범위 압력 감지 모드를 손쉽게 전환할 수 있도록 설계됐다.
압력 센서의 핵심 소재는 액체금속 중 하나인 갈륨으로, 금속임에도 불구하고 미온(29.76 ℃)에서 녹는점을 가져 쉽게 고체와 액체 간의 상태 변화가 가능하다. 연구팀은 내장된 갈륨의 상태에 따라 센서의 강성률이 변화하는 점에 기반해 온도에 따라 민감도와 감지 범위 변화가 가능한 압력 센서를 제작했다.
연구팀은 미세 유체기반 제작 방식을 통해 균일한 갈륨 미립자를 형성/활용해 압력 센서를 제작했고 이를 통해 센서 간 균일성 및 재현성을 극대화해 신뢰성 높은 대면적 전자 피부 제작을 가능하게 했다.
제작된 전자 피부는 인간 피부와 비교 시 97% 높은 민감도와 262.5% 넓은 압력 측정 범위를 보였다. 연구팀은 전자 피부의 가변성을 활용해 맥박 측정과 같이 높은 압력 민감도가 필요한 상황과 몸무게 측정과 같이 넓은 감지 범위가 필요한 상황 모두에 개발된 로봇 피부가 활용될 수 있음을 입증했다.
정재웅 교수는 "액체금속의 상변화를 활용한 이번 기술은 전자 피부를 넘어 상황과 목적에 맞게 전기/기계적 특성을 변환시킬 수 있는 다양한 다목적 전자기기, 센서, 로봇 기술의 개발에도 활용될 수 있을 것이다 ˮ라고 말했다.
한편 이번 연구는 과학기술정보통신부에서 추진하는 나노 및 소재 기술개발사업, ICT 핵심기술개발사업, 한국전자통신연구원 내부연구개발사업 개방형융합선행연구의 지원을 받아 수행됐다.
2022.10.27
조회수 1958
-
혁신전략정책연구소, 제10회 혁신과 기업가정신 세미나 개최
우리 대학 혁신전략정책연구소(Innovation Strategy and Policy Institute, 이하 ISPI)는 11일부터 13일까지 사흘 간 대전 본원에서 아시아혁신학회(AIEA), 전미경제연구소(NBER)와 공동으로 제10회 혁신과 기업가정신 세미나(2022 10th AIEA-NBER Conference on Innovation and Entrepreneurship)를 개최한다.
이번 콘퍼런스는 경제성장과 일자리 창출의 핵심인 '혁신과 기업가정신'에 대해서 ▴포스트 글로벌리제이션과 기업가적 경제(Entrepreneurial Economy) ▴저성장시대의 기업의 기술기반혁신모델 (Technology Innovation Model) ▴지속가능한 경제구조를 위한 창업생태계 모델 (Entrepreneurial Ecosystem) ▴창업환경의 새로운 패러다임과 경제성장 등 총 네 가지 주제를 중심으로 최신 연구를 발표하고 토론을 진행한다.
이번 세미나는 한국 사회가 사회적·정책적으로 당면한 저성장 및 양극화 문제를 되짚어보고 이를 극복할 수 있는 해결책과 함께 새로운 성장 동력을 창출하는 정책적 대안을 모색하기 위해 마련됐다. 또한, 대기업 중심의 산업 구조로 성장한 한국 경제가 ‘한국형 기업가정신’을 고취해 디지털 시대에 부합하는 새로운 부가가치 및 일자리를 창출하는 방안에 대해서도 함께 논의할 예정이다. 이와 함께, 기업 뿐만 아니라 대학 및 정부 등의 조직에도 적용할 수 있는 바람직한 혁신 및 기업가정신 생태계(Innovation and Entrepreneurship Ecosystem)에 대한 정책 제시도 함께 이루어진다.
우리 대학 기술경영학부 김원준 교수(혁신전략정책연구소장)와 공동 학회장을 맡은 MIT 슬론 경영대의 스콘 스턴(Scott Stern)교수는 전미경제연구소의 Innovation and Entrepreneurship Group의 Director로서 미국의 혁신 및 기업가정신 분야 연구 방향을 이끌어가고 있으며, 제프 퍼만 보스턴대 교수는 AI와 혁신의 관계를 연구하는 석학이다. 이번 세미나는 ▴기업가 정신과 혁신, ▴AI, 로봇과 혁신 ▴새로운 혁신과제 모델 ▴혁신과 지식 생산 등 총 네 개의 소주제로 진행되며, 9인의 세계 석학들이 연사로 참여한다.
김원준 KAIST 혁신전략정책연구소장은 "이번 콘퍼런스는 혁신과 기업가정신 분야의 국제적 흐름을 알 수 있는 소중한 기회가 될 것"이라며, "특히 인공지능 및 기계학습 등이 혁신과 기업가정신을 어떻게 살릴 수 있을지에 대한 대안을 제시하게 될 것"이라고 말했다.
KAIST ISPI는 혁신전략과 정책 연구분야의 글로벌 싱크탱크로서 2021년 정부 지원연구소로 선정됐다. 문명사적 격동기, 새로운 과학기술혁신 패러다임으로의 전환에서 한국과 국제사회가 지향해야 할 과학기술혁신의 전략적·정책적 방안을 제시하고, 과학기술 기반 국가 경쟁력 제고와 지속가능발전에 기여하는 것이 연구소의 목표다.공동 주최하는 미국 전미경제연구소(NBER, National Bureau of Economic Research)는 미국인 출신 노벨 경제학상 수상자 31명을 포함하여, 미국대통령경제자문위원회 위원장 등 다수의 연구자가 소속되어 있으며, 미국 경제정책에 매우 중요한 영향력을 가진 미국 핵심 경제연구기관이며, 미국 경제 각 분야에서 주요한 석학들로 구성된 연구기관이다.
2022.08.10
조회수 2308
-
사람처럼 느끼고 상처 치유가 가능한 로봇 피부 기술 개발
우리 대학 기계공학과 김정 교수 연구팀이 메사추세츠 공과대학(MIT), 슈투트가르트 대학교(Univ. of Stuttgart)의 연구자들과 공동연구를 통해 `넓은 면적에 대해 다양한 외부 촉각 자극을 인지할 수 있으며, 칼로 베어져도 다시 기능을 회복할 수 있는 로봇 피부 기술'을 개발했다고 9일 밝혔다.
기계공학과 박경서 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)'에 6월 9일 출판됐다. (논문명: A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing)
사람의 가장 큰 장기인 피부는 내부를 충격에서 보호함과 동시에 주위로부터의 물리적인 자극을 전달하는 통로다. 피부를 이용한 정보 전달(혹은 촉감)은 표면 인식, 조작, 쓰다듬기, 꼬집기, 포옹, 몸싸움 등으로 종류가 다양하며, 피부가 덮은 모든 부분에서 느낄 수 있기에 풍부한 비언어적 감정 표현과 교류를 가능하게 한다. 그래서 촉각은 `한 인간이 세계를 탐구하는 첫 번째 수단'이라고도 한다.
그러나, 로봇 분야의 비약적인 발전에도 불구하고 로봇 대부분은 딱딱한 소재의 외피를 가지며, 인간과의 물리적 교류를 터치스크린과 같은 특정한 부위로 제한하고 있다. 그 이유는 현재의 로봇 촉각 기술로는 `인간의 피부처럼 부드러운 물성과 복잡한 3차원 형상을 가지고, 동시에 섬세한 촉각 정보를 수용하는 것이 가능한 로봇 피부'를 개발하지 못하기 때문이다. 또한, 사람의 피부는 날카로운 물체에 베여 절상 혹은 열상이 발생하더라도 신축성과 기능을 회복하는 이른바 치유 기능을 하고 있으며, 이는 현대 기술로 재현하는 것이 매우 어렵다. 따라서, 사람과 로봇의 다양한 수준의 물리적 접촉을 중재하기 위해 부드러운 물성을 가지면서 다양한 3차원 형상을 덮을 수 있는 대면적 촉각 로봇 피부 기술이 필요하다.
김정 교수 연구팀은 이러한 로봇 피부를 만들기 위해 생체모사 다층구조와 단층촬영법을 활용했다. 이 기술들은 인간 피부의 구조와 촉각수용기의 특징과 구성 방식을 모사해, 적은 수의 측정 요소만으로도 넓은 3차원 표면 영역에서 정적 압력(약 0~15Hz) 및 동적 진동 (약 15~500Hz)을 실시간으로 감지 및 국지화하는 것을 가능케 했다. 기존의 터치스크린 기술은 해상도를 높일수록 필요한 측정점의 수가 증가하는 데 비해, 이번 기술은 넓은 수용영역을 갖는 측정 요소들을 겹치게 배치해 수십 개의 측정 요소만으로도 넓은 측정 영역을 달성할 수 있다.
연구팀은 측정된 촉감 신호를 인공지능 신경망으로 처리함으로써, 촉각 자극의 종류(누르기, 두드리기, 쓰다듬기 등)를 분류하는 것도 가능함을 선보였다. 더 나아가, 개발된 로봇 피부는 부드러운 소재(하이드로젤, 실리콘)로 만들어져 충격 흡수가 가능하고, 날카로운 물체에 의해 깊게 찢어지거나 베여도 피부의 구조와 기능을 손쉽게 회복하는 것이 가능했다.
연구진은 본 기술이 넓은 부위에 정교한 촉각 감각뿐만 아니라 사람의 피부와 유사한 물성과 질감도 부여할 수 있으므로, 서비스 로봇과 같이 사람과의 다양한 접촉과 상호작용이 필요한 응용 분야에 유용하게 활용될 것으로 기대했다. 예를 들면 점점 대중화되는 식당 서빙 로봇이나 인간형 로봇에 적용할 수 있다. 더 나아가, 로봇 피부를 의수/의족의 피부로 사용한다면 실제 사람의 손/다리와 똑같은 외형과 촉감 감각을 절단 환자들에게 제공할 수도 있다. 또한 인간형 로봇이 사람과 똑같은 기능과 외형의 피부를 가지고, 상처가 나더라도 피부의 기능을 복구하는 치유 능력을 갖게 할 수도 있다.
기계공학과 김정 교수는 "이번 연구를 통해 인간과 로봇이 같은 공간에 공존하기 위한 필수 기술인 대면적 로봇 촉각 피부를 개발했을 뿐만 아니라 현재 기술보다 월등한 사람의 피부감각 혹은 촉각의 성능에 비견할 만한 기술을 구현한 데 큰 의의가 있다ˮ라고 밝혔다.
한편, 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐으며,ᅠKAIST 기계공학과 양민진, 조준휘 박사과정과 메사추세츠 공과대학(MIT)의 육현우 박사, 슈투트가르트 대학교(Univ. of Stuttgart)의 이효상 교수가 공동연구자로 참여했다.
동영상 1: 로봇 피부 촉각 시연 (https://youtu.be/3T8dX32fo6U)
동영상 2: 로봇 피부 촉감 인식 시연 (https://youtu.be/CViv1oLo_Ec)
동영상 3: 로봇 피부 절개 및 복구 시연 (https://youtu.be/vsllVFM9yS4)
동영상 4: 로봇피부의 미용의수에의 적용 (https://youtu.be/qR1msF0FDTA)
2022.06.09
조회수 4776
-
기계공학과 공경철, 화학과 임미희 교수-과기부 기초과학 리더연구자 선정
우리 대학 기계공학과 공경철 교수, 화학과 임미희 교수가 과학기술정보통신부가 주관한 ‘2022년도 기초연구사업의 리더연구자(12인)’부문에 선정됐다.
리더연구는 국내 최고 수준의 기초과학 연구자의 연구주제를 지원하는 프로그램으로, 선정된 연구자는 연간 8억원 규모로 최대 9년간 72억원까지 지원받는다.
기계공학과 공경철 교수는 로봇과 사람이 결합된 형태인 웨어러블 로봇의 제어 성능 향상, 동기화를 연구한다. 인간의 운동 제어이론, 인간-로봇 통합 시뮬레이션 인공지능 학습 등 연구 범위를 확장할 예정이다. 본 연구를 통해 더 다양한 종류의 보행장애를 극복하는 웨어러블 로봇 기술을 실현하는 것이 목표다.
공교수는 “충분한 기간 기초연구에 집중할 기회가 생긴 만큼 보행장애 완전 극복을 위한 발판을 다지겠다. 사람의 관점에서 웨어러블 로봇을 탐구하고 고민할 것”이라고 밝혔다.
화학과 임미희 교수는 기존에 밝혀지지 않은 금속과 뇌신경단백질 간의 다양한 상호작용을 밝히고, 이를 바탕으로 새로운 신경 퇴화를 유발하는 금속-뇌신경단백질 복합체를 발굴한다. 본 연구를 통해 치매 발병 원인을 규명하고 새로운 개념의 치료제·진단제를 개발하는 것이 목표다.
임교수는 “리더 연구과제에 선정되어 영광이다. 앞으로 연구에 더욱 정진하여 기초과학 중심의 치매 극복에 힘쓰겠다”라고 소감을 전했다.
과기부는 6월 중 선정된 신규 리더연구자에 지정서를 수여하고 연구에 착수하도록 본격 지원할 예정이다.
2022.06.07
조회수 2777
-
생각만으로 정확하게 로봇팔 조종이 가능한 뇌-기계 인터페이스 개발
우리 대학 바이오및뇌공학과 정재승 교수 연구팀이 3차원 공간상에서 생각만으로 로봇팔을 높은 정확도 (90.9~92.6%)로 조종하는 `뇌-기계 인터페이스 시스템'을 개발했다고 23일 밝혔다.
정 교수 연구팀은 인공지능과 유전자 알고리즘을 사용해 인간의 대뇌 심부에서 측정한 뇌파만으로 팔 움직임의 의도를 파악해 로봇팔을 제어하는 새로운 형태의 뇌-기계 인터페이스 시스템을 개발했다. 뇌 활동만으로 사람의 의도를 파악해 로봇이나 기계가 대신 행동에 옮기는 `뇌-기계 인터페이스' 기술은 최근 급속도로 발전하고 있다. 하지만 손을 움직이는 정도의 의도 파악을 넘어, 팔 움직임의 방향에 대한 의도를 섬세하게 파악해 정교하게 로봇팔을 움직이는 기술은 아직 정확도가 높지 않았다.
하지만 연구팀은 이번 연구에서 조종 `방향'에 대한 의도를 뇌 활동만으로 인식하는 인공지능 모델을 개발했고, 그 결과 3차원 공간상에서 24개의 방향을 90% 이상의 정확도로 정교하게 해석하는 시스템을 개발했다.
게다가 딥러닝 등 기존 기계학습 기술은 높은 사양의 GPU 하드웨어가 필요했지만, 이번 연구에서는 축적 컴퓨팅(Reservoir Computing) 기법을 이용해 낮은 사양의 하드웨어에서도 인공지능 학습이 가능하여 스마트 모바일 기기에서도 폭넓게 응용될 수 있도록 개발해, 향후 메타버스와 스마트 기기에도 폭넓게 적용이 가능할 것으로 기대된다.
우리 대학 김훈희 박사(現 강남대 조교수)가 제1 저자로 참여한 이번 연구는 국제학술지 `어플라이드 소프트 컴퓨팅(Applied Soft Computing)' 2022년 117권 3월호에 출판됐다. (논문명 : An electrocorticographic decoder for arm movement for brain-machine interface using an echo state network and Gaussian readout).
뇌-기계 인터페이스는 사용자의 뇌 활동을 통해 의도를 읽고 로봇이나 기계에 전달하는 기술로서 로봇, 드론, 컴퓨터뿐만 아니라 스마트 모바일 기기, 메타버스 등에서의 이용될 차세대 인터페이스 기술로 각광받고 있다.
특히 기존의 인터페이스가 외부 신체 기관을 통해 명령을 간접 전달(버튼, 터치, 제스처 등)해야 하지만 뇌-기계 인터페이스는 명령을 뇌로부터 직접적 전달한다는 점에서 가장 진보된 인터페이스 기술로 여겨진다.
그러나 뇌파는 개개인의 차이가 매우 크고, 단일 신경 세포로부터 정확한 신호를 읽는 것이 아니라 넓은 영역에 있는 신경 세포 집단의 전기적 신호 특성을 해석해야 하므로 잡음이 크다는 한계점을 가지고 있다.
연구팀은 이러한 문제 해결을 위해 최첨단 인공지능 기법의 하나인 `축적 컴퓨팅 기법'을 이용해 뇌-기계 인터페이스에서 필요한 개개인의 뇌파 신호의 중요 특성을 인공신경망이 자동으로 학습해 찾을 수 있도록 구현했다.
또한 유전자 알고리즘(Genetic Algorithm)을 이용해 인공지능 신경망이 최적의 뇌파 특성을 효율적으로 찾을 수 있게 시스템을 설계했다. 연구팀은 심부 뇌파를 최종 해석하는 리드아웃(Readout)을 가우시안(Gaussian) 모델로 설계해 시각피질 신경 세포가 방향을 표현하는 방법을 모방하는 인공신경망을 개발했다. 이런 리드아웃 방식은 축적 컴퓨팅의 선형 학습 알고리즘을 이용해 일반적 사양의 간단한 하드웨어에서도 빠르게 학습할 수 있어 메타버스, 스마트기기 등 일상생활에서 응용이 가능해진다.
특히, 이번 연구에서 만들어진 뇌-기계 인터페이스 인공지능 모델은 3차원상에서 24가지 방향 즉, 각 차원에서 8가지 방향을 디코딩할 수 있으며 모든 방향에서 평균 90% 이상의 정확도 (90.9%~92.6% 범위)를 보였다. 또한 연구된 뇌-기계 인터페이스는 3차원 공간상에서 로봇팔을 움직이는 상상을 할 때의 뇌파를 해석해 성공적으로 로봇팔을 움직이는 시뮬레이션 결과를 보였다.
인공지능 시스템을 만든 제1 저자인 김훈희 박사는 "공학적인 신호처리 기법에 의존해 온 기존 뇌파 디코딩 방법과는 달리, 인간 뇌의 실제 작동 구조를 모방한 인공신경망을 개발해 좀더 발전된 형태의 뇌-기계 인터페이스 시스템을 개발해 기쁘다ˮ면서 "향후 뇌의 특성을 좀 더 구체적으로 이용한 `뇌 모방 인공지능(Brain-inspired A.I.)'을 이용한 다양한 뇌-기계 인터페이스를 개발할 계획이다ˮ라고 말했다.
이번 연구를 주도한 연구책임자 정재승 교수는 "뇌파를 통해 생각만으로 로봇팔을 구동하는 `뇌-기계 인터페이스 시스템'들이 대부분 고사양 하드웨어가 필요해 실시간 응용으로 나아가기 어렵고 스마트기기 등으로 적용이 어려웠다. 그러나 이번 시스템은 90%~92%의 높은 정확도를 가진 의도 인식 인공지능 시스템을 만들어 메타버스 안에서 아바타를 생각대로 움직이게 하거나 앱을 생각만으로 컨트롤하는 스마트기기 등에 광범위하게 사용될 수 있다ˮ고 말했다.
이번 연구 결과는 사지마비 환자나 사고로 팔을 잃은 환자들을 위한 로봇팔 장착 및 제어 기술부터, 메타버스, 스마트기기, 게임, 엔터테인먼트 애플리케이션 등 다양한 시스템에 뇌-기계 인터페이스를 적용할 가능성을 열어 줄 것으로 기대된다.
이번 연구는 한국연구재단 뇌 원천기술개발사업의 지원을 받아 수행됐다.
2022.02.24
조회수 6530
-
산업및시스템공학과 장영재 교수, 디지털혁신 SW부문 대상(과기부 장관상) 수상
우리 대학 산업및시스템공학과 장영재 교수가 CDE학회(Society for Computational Design and Engineering)에서 주관하는 2022 디지털혁신 SW 공모전에서 대상인 '과기부 장관상'을 수상하였다.
장영재 교수 연구진은 2016년부터 강화학습 기반 대규모 군집 물류 자동화 로봇을 제어하는 SW개발을 진행해왔다. 관련 기술은 2019년 KAIST 10대 기술로 선정되었으며 IEEE SMILE과 CIRP등에서 최고 논문으로 선정되기도 하였다.
KAIST의 원천 기술을 기반으로 장영재 교수 연구실 출신 박사들이 <다임리서치>란 스타트업을 2020년 설립하였으며 작년 SW 개발에 성공 글로벌 반도체, 평판디스플레이, 전기차 베터리 (2차전지)제조 공장에 SW를 공급하고 있다. KAIST 연구소 기업인 <다임리서치>는 인공지능기술과 디지털트윈 기술을 결합한 제조 SW기업으로 성장중이다.
장영재 교수는 "이번 대상수상은 KAIST 기술을 통한 사업화 및 산업계 기여에 의미를 둔다"라 언급하였다.
2022.02.17
조회수 3092