-
빛의 화가 김인중 신부 ‘빛의 소명’ 특별 전시 개최
우리 대학이 세계적인 스테인드글라스 거장인 김인중 신부(베드로·도미니코 수도회)의 특별전시 '빛의 소명(召命) La Vocation de Lumière' 展을 18일부터 개최한다.
대전 본원 학술문화관 4층 김인중홀에서 열리는 이번 전시에서는 산업디자인학과 초빙석학교수로 임용된 김인중 신부가 제작한 가로 10.12m, 세로 7.33m 크기의 천장 스테인드글라스 작품이 공개된다. 우리 대학의 지원을 받아 제작된 이 작품은 김인중 신부가 채색한 도안을 유리판에 세라믹 컬러 페인트로 정교하게 옮긴 후 630℃에 구워 완성됐다. 전체 면적 68.06㎡로 총 53점의 유리판으로 구성됐다. 일반 벽면이 아닌 20m 높이의 천창에 설치된 작품은 투과되는 빛에 따라 다양한 입체감으로 색을 드리운다. 김인중 신부 고유의 붓 터치와 색감에 시간과 계절이라는 자연의 변화가 더해져 매일 다른 빛의 형상을 감상할 수 있는 것이 특징이다. 김 신부는 지난해 4월부터 제작회의, 세미나, 인터뷰 등을 통해 여러 차례 KAIST 구성원들과 교류하며 설치 공간을 선정하고 이에 맞는 작품을 설계했다. 스테인드글라스의 스케치 격인 원화를 그리는 창작 과정도 구성원들에게 공개됐다. 작품이 설치된 학술문화관 4층은 학생들의 창작·협업·휴식·행사 개최 등 다양한 목적으로 사용되는 공간이다. 캠퍼스를 전시 공간으로 활용하는 ‘캠퍼스 갤러리’ 추진 계획에 맞춰 이번 전시를 계기로 김인중홀로 명명돼 스테인드글라스와 함께 원화 회화 9점이 함께 전시된다.
김인중 신부는 "사람들을 결합시키고 사상을 전달하는 수단이 된다는 점에서 예술과 과학의 구실은 같지만, 과학은 개념으로 설명하고 예술은 미적 형상(美的形象)으로 말한다"라고 전했다. 이어, 김 신부는 "교내 구성원들이 예술 작품에 영감을 받아 창의적인 인재로 성장할 수 있길 바란다"라고 덧붙였다. 전시를 총괄한 석현정 KAIST 미술관장은"스테인드글라스로 빛의 존재를 다시금 상기시켜 주는 '빛의 소명(召命)' 전시는 캠퍼스의 일상 공간을 영감의 원천을 제공하는 특별한 공간으로 바꾸어 놓았다"라고 설명했다. 석 관장은 "물감보다 더 정교하고 미묘한 수천 가지 색을 머금은 색유리의 아름다움을 탐미하며 구성원들이 생활 속에서 문화예술을 향유하길 바란다"고 말했다.
김인중 특별전시 '빛의 소명(召命) La Vocation de Lumière'은 올해 12월 29일까지 KAIST 구성원은 물론 대중에게 무료로 공개된다. 법정 공휴일을 제외한 매일 정오에 사전 예약자에 한해 도슨트가 함께하는 '홀리눈(Holy Noon)' 투어를 진행한다. 도슨트 투어 신청에 관한 내용은 KAIST 미술관 홈페이지(https://art.kaist.ac.kr/)에서 확인할 수 있다. 김인중 작가는 서울대 미술대학 회화과와 동대학원을 졸업한 뒤 1969년 스위스 프리부르(Fribourg)대학으로 떠나 도미니코 수도회에 입회해 사제가 되었다. 1973년 파리 쟈크 마쏠 화랑에서 첫 개인전을 연 이후 프랑스를 중심으로 활동했다. 스위스 일간지 '르 마땡(Le Matin)'에서 세계 10대 스테인드글라스 작가로 선정되며 유럽 화단에서 '빛의 화가'라는 칭호를 얻었다. 프랑스 정부로부터 문화예술 공훈 훈장인 '오피시에'(2010)를 받아 한국인으로는 처음 '아카데미 프랑스 가톨릭' 회원(2016)에 추대됐다. 프랑스 중부의 소도시인 앙베르(Ambert)의 옛 재판소 자리의 '김인중 미술관'(2019), 아일랜드 더블린 현대미술관(Museum of Modern Art), 국립현대미술관, 대전시립미술관, 용인 신봉동성당 등이 작품을 소장하고 있다.
▶ ART TALK :: 김인중의 스테인드글라스 Kim Enjoong's Stained Glass(https://youtu.be/jBoAdOQayy0)
2023.09.18
조회수 3159
-
정기훈 교수, 곤충 눈 구조 모방한 초박형 카메라 개발
〈 왼쪽부터 장경원 박사과정, 정기훈 교수, 황순홍 박사과정 〉
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 독특한 눈 구조를 가진 곤충인 제노스 페키(Xenos peckii)를 모사한 초박형 디지털카메라를 개발했다.
제노스 페키를 모사해 개발한 초박형 디지털카메라는 기존 이미징 시스템보다 더 얇으면서 상대적으로 넓은 광시야각과 높은 분해능을 갖는다. 감시 및 정찰 장비, 의료용 영상기기, 모바일 등 다양한 소형 이미징 시스템에 적용 가능할 것으로 기대된다.
금동민, 장경원 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용(Light : Science & Applications)’ 10월 24일 자에 게재됐다. (논문명: 제노스 페키의 시각기관을 모사한 초박형 디지털카메라, Xenos peckii vision inspires an ultrathin digital camera)
정 교수 연구팀은 자연계에서 발견되는 광학 구조를 모방하는 연구를 꾸준히 진행해 왔다. 반딧불이의 배 마디 구조를 분석해 광효율을 높은 LED 렌즈를 개발한 바 있고, 생체모사를 통한 무반사 기판을 제작하는 등 해당 분야를 선도하고 있다.
최근 전자기기 및 광학기기의 소형화로 초박형 디지털카메라에 대한 수요가 증가하고 있다. 그러나 기존의 카메라 모듈은 광학적 수차를 줄이기 위해 광축을 따라 복수의 렌즈로 구성돼 있어 부피가 매우 크다는 단점이 있다. 이런 모듈을 단순히 크기만 줄여 소형기기에 적용하면 분해능과 감도가 떨어지게 된다.
연구팀은 문제 해결을 위해 곤충인 제노스 페키의 시각구조를 적용한 렌즈를 제작했고 이를 이미지 센서와 결합한 초박형 디지털카메라를 개발했다.
곤충의 겹눈구조는 수백, 수천 개의 오마티디아라 불리는 아주 작은 광학 구조로 이뤄져 있다. 일반적인 겹눈구조는 수백, 수천 개의 오마티디아에서 한 개의 영상을 얻지만, 제노스 페키는 다른 곤충과는 달리 각 오마티디아에서 개별의 영상을 획득할 수 있다. 또한 오마티디아 사이에 빛을 흡수할 수 있는 독특한 구조를 가져 각 영상 간 간섭을 막는다.
연구팀이 개발한 카메라는 2mm 이내의 매우 작은 크기로 제노스 페키의 겹눈구조를 모방해 수십 개의 마이크로프리즘 어레이와 마이크로렌즈 어레이로 구성된다. 마이크로프리즘과 마이크로렌즈가 한 쌍으로 채널을 이루고 있으며 각각의 채널 사이에는 빛을 흡수하는 중합체가 존재하며 각 채널 간 간섭을 막는다.
각각의 채널은 화면의 다른 부분들을 보고 있으며 각 채널에서 관측된 영상들은 영상처리를 통해 하나의 영상으로 복원돼 넓은 광시야각과 높은 분해능을 확보할 수 있다.
정기훈 교수는 “초박형 카메라를 제작하는 새로운 방법을 제시했다”며 “이 연구는 기존의 평면 CMOS 이미지 센서 어레이에 마이크로 카메라를 완전히 장착한 초박형 곤충 눈 카메라의 첫 번째 데모이며 다양한 광학 분야에 큰 영향을 미칠 것으로 확신한다.”라고 말했다.
□ 그림 설명
그림1. (좌) 제노스 페키의 SEM 영상. (우) 형광 염색된 제노스 페키의 시각구조
그림2. (좌) MEMS 공정을 통해 제작된 마이크로프리즘 어레이의 SEM 영상. (우) 완성된 초박형 디지털 카메라의 광학 영상
그림3. (좌) Xenos peckii의 시각기관을 통해 얻은 영상. (우) 초박형 디지털 카메라를 통해 얻은 영상
2018.11.20
조회수 8460
-
곤충 눈을 모사한 무반사 미세렌즈 개발
정기훈 교수
- KAIST 정기훈 교수 연구팀, 세계적 물리학회지에 표지논문으로 게재돼, 국내외 특허출원 중 -
- 반도체 양산공정 그대로 활용할 수 있어 상용화 기대 커 -- 빛 반사율 1%이하로 낮춰 값비싼 무반사 코팅 대체 가능 -
국내 연구진이 곤충의 눈을 모사해 빛의 반사를 최소화한 무반사 미세렌즈를 개발하는데 성공했다. 이 렌즈는 특히 휴대폰, 디지털카메라 등에 적용된 이미지센서에 활용할 수 있는 데다, 기존 반도체 양산 공정을 그대로 활용할 수 있다는 점에서 상용화에 대한 기대가 크다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 곤충의 눈 표면에 형성된 나노구조를 모사해 저렴하면서도 빛 반사율을 1%이하로 낮춘 무반사 미세렌즈 양산기술을 개발하는 데 성공했다.
KAIST는 정 교수 연구팀이 개발한 이번 기술을 카메라 이미지센서용 미세렌즈에 적용할 경우 집광효율이 높기 때문에 대조 효과와 밝기에 대한 특성이 우수한 고감도 카메라를 만들 수 있다는 점에서 국내외로부터 많은 관심을 받을 것으로 예상된다고 설명했다.
특히 정 교수팀이 개발한 공정은 이미 상용화 중에 있는 기존의 반도체공정을 그대로 활용할 수 있다. 따라서 렌즈 표면에 굴절률이 낮은 막을 여러 번 입히는 기존의 무반사 코팅보다 제품 제작비용이 훨씬 줄어들 것으로 기대된다고 강조했다.
나비, 잠자리 등 곤충의 눈은 대부분 겹눈 2개로 구성돼 있다. 이들 곤충은 겹눈을 형성하는 벌집모양의 낱눈을 약 1만~3만 개를 가지고 있는데, 낱눈에는 수많은 나노 돌기가 빛의 투과를 돕는 역할을 한다.
연구팀은 이 같은 특성을 갖는 곤충의 눈이 오랜 진화를 통해 최적의 조건을 만들어 온 것으로 판단해, 컴퓨터 시뮬레이션을 거쳐 빛이 가장 잘 투과되는 나노 구조라는 것을 알아냈다.
이후 이 구조를 모사해 수십 마이크로미터(㎛) 크기의 카메라 미세렌즈에 적용한 결과 반사율이 기존 10%에서 1%이하로 현격히 감소하는 특성을 확인했다.
정 교수 연구팀은 곤충에서 착안한 무반사 구조를 만들기 위해 기존 반도체 생산에 쓰이는 식각공정을 활용했다.
미세렌즈에 은 박막 코팅을 한 후 저온열처리를 통해 은나노 입자를 미세렌즈 표면에 형성시켰다. 이를 마스크로 삼아 렌즈표면을 건식 식각해 무반사 특성을 갖는 나노구조를 렌즈 곡면에 구현하는 데 성공했다.
정기훈 교수는 “곡면 구조의 카메라 미세렌즈 표면에서 빛의 반사가 심해 집광효율이 감소하는 문제가 있었는데, 몰포나비의 눈에 형성된 나노 구조에 착안해 기술개발에 성공했다”며 “기존 반도체공정을 그대로 이용할 수 있기 때문에 고가의 무 반사 코팅보다 훨씬 저렴한 단가로 카메라 이미지센서용 무반사 미세렌즈에 즉시 적용할 수 있다”고 말했다.
한편, 정기훈 교수가 주도하고 정혁진 박사과정 학생이 참여한 이번 연구는 세계적인 물리학회지 ‘어플라이드 피직스 레터스(Applied Physics Letters)’ 최신호(11월 12일자)에 표지논문으로 게재됐으며 현재 국내외 특허 출원중이다.
그림1. 곤충 겹눈(좌), 곤충의 낱눈(우)을 확대한 현미경 사진
그림2. 곤충 겹눈의 나노돌기 구조를 모사한 고효율 미세렌즈 배열. 무반사 렌즈는 일반 렌즈에 비해 표면 반사를 현격히 감소시켜 무반사 렌즈를 통해 맺힌 이미지의 선명도를 증가시킨다.
그림3. 카메라 이미지센서용 미세렌즈 개발 공정
1) 고분자 미세렌즈 배열 전면에 은 박막을 코팅
2) 가열을 통해 은 박막을 은 나노입자로 변형
3) 은 나노입자를 마스크로 삼아 렌즈 식각
4) 은 나노입자 제거하여 무반사 미세렌즈 배열 완성
그림4. 논문표지
2012.11.21
조회수 14334
-
정재승 칼럼 기업혁신을 이끌어내는 눈
정재승 바이오 및 뇌공학과 교수가
동아일보 2011년 2월 15일(화)자 칼럼을 실었다.
제목: 기업혁신을 이끌어내는 눈
신문: 동아일보
저자: 정재승 바이오 및 뇌공학과 교수
일시: 2011년 2월 15일(화)
기사보기: 기업혁신을 이끌어내는 눈
2011.02.15
조회수 7814
-
과학동아, 광자유체집적소자연구단(단장 생명화공 양승만교수) 소개
과학동아 2010년 1월호는 우리학교 생명화학공학과 양승만교수가 단장으로 지휘하는 "광자유체집적소자 연구단"을 4페이지에 걸쳐 소개했다.
"광결정으로 전자종이와 잠자리 눈 센서 만든다"란 제목의 이 기사에서는 창의연구단인 양승만 교수의 연구단이 미세한 양의 유체를 마음대로 조절하는 장비를 만들어 대량의 광결정을 순식간에 만든는 획기적인 방법을 개발했다고 보도하고 있다.
자세한 내용은 과학동아 2010년 1월호의 관련기사 PDF를 통해 확인할 수 있다.
PDF로 기사보기 201001-donag-science.pdf
매체: 월간지 과학동아
일시: 2010년 1월호
면수: 총 4면 게재(162~165쪽)
기자: 김윤미 기자(ymkim@donga.com)
2010.01.07
조회수 14032
-
양승만 교수, 액체 방울을 이용한 초소형 인조곤충눈 구조 제조
- 초정밀 극미량 물질 인식센서로 활용 - 네이처 포토닉스에서‘미세패턴기술-광자돔’이라는 제목의 하이라이트로 소개
곤충 및 갑각류 등의 눈은 포유류의 눈과는 달리 수백~수만개의 홑눈(또는 낱눈)이 모여 생긴 겹눈 구조를 갖고 있다. 각각의 홑눈은 투명한 볼록렌즈로서 빛을 모아 명암, 색깔(파장)과 같은 빛 정보를 뇌에 전해 주며 뇌에서 전달된 정보를 재조합하여 사물을 감지한다. 각 홑눈은 육방밀집구조로 서로 빈틈없이 배열되어 돔 형태의 겹눈 표면을 메우고 있다. (파리와 잠자리의 눈 사진참조)
생명화학공학과 양승만 교수의 광자유체집적소자 창의연구단은 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 자기조립 원리를 규명하는 연구를 수행하여 실제 곤충눈의 수백분의 일 크기의 초소형 인조겹눈구조를 실용적으로 제조할 수 있는 방법을 최근 개발했다.
이 연구결과는 최근 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 誌 10월호 표지논문(cover paper)으로 게재 됐으며 인조곤충눈 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 특별히 주목해야할 논문(Advances in Advance)으로 선정됐다.
특히, 네이처 포토닉스(Nature Photonics)지는 10월호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 이 연구결과를 "미세패턴기술-광자돔(Micropatterning–Photonic domes)"이라는 제목으로 "뉴스와 논평(News & Views)"란에 하이라이트로 선정하여 비중있게 게재했다.
지난 20여 년 동안 곤충눈, 오팔, 나비날개 등 빛정보를 처리할 수 있는 자연계에 존재하는 구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔으나, 실용적인 구조를 얻는 데에는 한계가 있었다. 양 교수팀은 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’으로부터 지원을 받아 초소형 인조곤충눈 구조를 실용적으로 제조할 수 있는 기술을 확보하기 위한 연구를 수행해 왔다.
Nature Photonics지 10월호가 하이라이트로 선정하여 주목한 양 교수팀의 이번연구에서는 실제 곤충눈 크기의 수백분의 일 정도로 초소형이며 균일한 크기와 모양을 갖는 인조곤충눈 구조를, 크기가 수십 마이크로미터인 균일한 기름방울을 이용하여 성공적으로 제조하여 규칙적으로 배열하였다. 특히 주목할 것은 제조공정이 손쉽고 빠른 나노구슬의 자기조립 원리를 이용한 점이다.
우선 크기가 수백 나노미터인 균일한 유리구슬(낱눈렌즈)을 물속에 분산시킨 후, 크기가 수십 마이크로미터인 균일한 기름방울을 주입하고 물-기름-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬이 물과 기름방울 사이의 경계면으로 이동한다. 그 후 물-유리-기름방울의 혼합물을 기판 위에 뿌리면 기름방울이 반구의 돔 모양으로 변형되고 유리구슬렌즈는 저절로 기름방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다 (전자현미경사진 참조). 이 때 자외선을 기름방울에 쪼여서 고형화시킴으로써 종래에 수십 시간이 소요되는 인조곤충눈 조립공정을 불과 수분 만에 제조할 수 있다.
수 천개의 미세렌즈가 장착된 돔 구조의 초소형 인조곤충눈은 인간의 눈에 비해 시야각이 넓고 빛을 모으는 능력도 매우 높다. 따라서, 환경의 미세한 변화를 감지할 수 있는 능력을 보유하므로 신약개발을 비롯하여 극미량의 물질을 인식할 수 있는 초고감도 감지소자를 요구하는 다양한 분야에 응용될 수 있다.
특히 최근에 신약개발 등 바이오 산업의 실용화에 사용되고 있는 극미량의 시료를 처리할 수 있는 반도체칩 규모의 실험실인 랩언어칩(Lab on a Chip)에 초소형 인조곤충눈을 도입할 경우 높은 정밀도를 갖는 물질 감지소자로 활용될 수 있다.
이러한 인조곤충눈 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 수 밀리미터 크기의 실제 곤충눈 크기의 인조곤충눈은 보고된 바 있다. 그러나, 본 연구의 결과는 초소형 인공곤충눈 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소다.
2009.10.06
조회수 23626
-
김탁환, 정재승교수 SF추리소설 ‘눈먼 시계공’ 동아일보 공동연재
우리학교 김탁환, 정재승 교수가 지난 5일부터 동아일보에 미래를 배경으로 한 SF 추리소설 ‘눈먼 시계공’의 공동 연재를 시작했다. 소설가로 활동 중인 김 교수의 인문학적 상상력에 과학자인 정 교수의 미래 과학 지식을 접목한 테크노 스릴러물이다. 또한 이 작품은 소설가와 과학자가 학제적 융합 연구를 수행하여 예술적 창작물을 내놓은 국내 첫 사례로 추정된다.
소설은 2049년 서울특별시를 배경으로 "스티머스"라는 단기기억 인출 장치를 이용하여 범인을 체포하는 대뇌수사팀과 로봇격투기 대회를 중심으로 연쇄살인범을 추리하여 잡는 이야기가 두 축을 이룬다. 40년 후 우리의 모습을 현재의 연구 성과를 바탕으로 담으면서, 인간이란 무엇인가 라는 본질적인 물음을 발달된 문명 속에 던질 예정이다. 원고지 약 2000매 분량으로 연재가 끝나면 올해 가을 단행본으로 출간한다.
김 교수와 정 교수는 KAIST 문화기술대학원 “디지털 스토리텔링 앤 코그니션 랩(Digital Storytelling & Cognition Lab)”에서 3년 동안 학제적 융합 연구와 소속 랩 학생 지도 업무를 공동으로 수행해 오고 있다. 이 연구실은 과학.인문학.예술이 융합되는 문화콘텐츠를 연구하고 창작 한다.
이 소설에 관한 자세한 사항은 동아일보 디지털스토리를 참고하면 된다.
2009.01.19
조회수 18854
-
2006년 올해의 KAIST 동문상
왼쪽에서부터 장병규 대표, 김진곤 교수, 김신배사장, 이상기 원장
KAIST 총동문회(회장 표삼수 / 한국오라클㈜ 대표이사)는 2006년 ‘올해의 KAIST 동문상’수상자를 선정, 지난 13일(토) 메리어트 호텔 그랜드볼룸에서 열린 신년하례회에서 시상했다.
올해의 KAIST 동문상에는 ▲젊은 동문 부문 장병규 (주)첫눈 대표이사 ▲학술 부문 김진곤 포항공대 교수 ▲산업 부문 김신배 SK텔레콤 사장 ▲사회 부문 이상기 한국생명공학연구원장이 수상했다.
젊은 동문 부문 장병규(蔣柄圭, 34, 1997년 KAIST 전산학과 석사 졸) 대표이사는 한국의 대표적 인터넷 기업으로 성장한 네오위즈를 공동 창업하고, 검색 벤처인 (주)첫눈을 창업, 국가 IT 산업 발전에 크게 기여했다.
학술 부문 김진곤(金進坤, 49, 1982 KAIST 화학공학과 석사 졸) 교수는 고분자 튜브 이론을 개발하는 등 나노 분야에 뛰어난 연구 업적을 이루었다.
산업 부문 김신배(金信培, 53, 1980년 KAIST 산업공학과 석사 졸) 사장은 탁월한 기술경영 능력을 발휘하여 이동통신 및 정보시스템 산업 발전에 기여하고, 창의적 경영철학으로 후배 공학도의 귀감이 되었다.
사회 부문 이상기(李尙基, 56, 1980년 KAIST 생물공학과 박사 졸) 원장은 유전공학분야의 실용화 기술 개발과 정부의 생명공학 정책 수립에 기여했고, 한국생명공학연구원 원장으로 재임하며 경영 혁신을 통한 대형 연구성과를 창출했다.
‘올해의 KAIST 동문상’은 KAIST 동문 최고의 명예로 국가와 사회 발전에 공헌하고, 모교의 명예를 높인 동문을 매년 선정, 포상함으로써 동문들의 활동을 격려하기 위해 지난 1992년 제정되었다.
2007.01.19
조회수 16930