본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%84%A4%EC%9D%B4%EC%B2%98
최신순
조회순
단백질의 생체분자 인식 메커니즘 규명
- “단백질이 생체분자를 인식하고 결합하는 기작을 규명해 50년 동안의 수수께끼 풀었다” - - 생명현상의 이해와 효능이 높은 치료제 개발에 활용 가능성 기대 - 우리 학교 생명과학과 김학성 교수가 서울대학교 물리학과 홍성철 교수와 공동으로 단백질이 생체 내 분자를 인식하고 결합하는 메커니즘을 규명했다. 연구 결과는 생명과학분야의 권위지인 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 3월 18일자 온라인 판에 발표됐다. 단백질이 생체분자를 인식하고 결합하는 메카니즘을 밝혀낸 이번 연구로 인해 단백질의 조절기능을 보다 정확하게 파악할 수 있게 돼 앞으로 복잡한 생명현상을 이해하는데 핵심적인 역할을 할 것으로 기대된다. 이와 함께 단백질의 생체분자 인식은 각종 질병의 발생과도 밀접하게 연관돼 있어 향후 효능이 높은 치료제 개발에도 기여할 것으로 전망된다. 핵산, 단백질 등으로 알려진 생체분자는 생물체를 구성하거나 생물의 구조, 기능, 정보전달 등에도 꼭 필요한 물질이다. 특히, 단백질은 생체분자를 특이적으로 인지하고 결합하면서 모든 생명현상을 조절해 생명현상을 유지하는데 가장 중요한 역할을 한다. 단백질의 생체분자 인식에 오류가 발생하면 비정상적 현상으로 각종 질병이 유발되기도 한다. 연구팀은 단백질이 다양한 구조를 갖는데 구조적으로 가장 안정한 ‘열린 구조’와 상대적으로 불안정한 ‘부분 닫힘 구조’를 반복한다는 점에 주목했다.김 교수 연구팀은 단백질의 생체분자 인식 메커니즘을 설명하기 위해 생체분자가 결합하면서 단백질의 구조가 변하는 현상을 단 분자 수준에서 실시간으로 분석했다. 연구결과 생체분자는 가장 안정된 구조의 단백질을 주로 선호하며 결합과 동시에 단백질을 가장 에너지 수준이 낮은 안정된 구조로 변화시킨다는 사실을 세계 최초로 규명했다. 이와 함께 생체분자는 불안정한 ‘부분 닫힘 구조’에도 결합해 단백질 구조를 변화시킨다는 사실도 밝혀냈다. 연구팀의 이번 결과는 단백질의 생체분자 인식 메커니즘을 설명하기 위해 현재까지 제안된 모델인 단백질이 생체분자와 결합하면서 구조가 변한다는 ‘유도형 맞춤 모델’과 단백질의 다양한 구조 중에서 최적의 하나만을 선택적으로 인지한다는 ‘구조 선택 모델’에 대해 처음으로 실험을 통해 완벽히 입증해 낸 것으로 학계는 평가하고 있다. 김학성 교수는 이번 연구에 대해 “생체분자가 존재하는 경우 단백질의 구조 전환 속도가 변하는 현상을 단 분자 수준에서 분석해 단백질의 생체분자 인식 메카니즘을 처음으로 직접 증명한 것”이라며 “생물 교과서에 50년 동안 가설로만 인식되어지던 것을 세계 최초로 실험으로 증명해 풀리지 않을 것만 같았던 수수께끼를 풀어냈다”고 의의를 밝혔다. 그림1. 열린 구조와 부분적으로 열린 구조를 갖고 있는 단백질이 생체분자를 인지하고 결합하는 양상 그림2. 단백질의 다양한 구조 중에서 가장 안정한 상태인 열린 구조(open form)에 생체분자(ligand) 가우선적으로 결합해 더욱 안정한 완전히 닫힌 구조(closed form)로 변함. 또한 단백질의 불안정한 구조(partially closed form)에도 생체분자가 결합해 완전히 닫힌 구조로 변하게 함.
2013.03.21
조회수 15554
이정용 교수, 이달의 과학기술자상 수상
이정용 교수 액체 내의 수많은 반응 메카니즘을 규명할 수 있는 기술을 개발한 우리 학교 신소재공학과 이정용 교수가 "이달의 과학기술자상" 2월 수상자로 선정됐다. 이 교수는 세계 최초로 액체 시료를 그래핀(graphene)에 밀봉하는 기술을 개발해 액체 내에서 나노입자가 성장하는 과정을 원자 단위에서 실시간으로 관찰하는 데 성공한 공로를 인정받았다. 그래핀이란 탄소 원자가 벌집 모양의 육각형 형태로 연결된 2차원 평면 구조를 이루는 물질로 구리보다 100배 이상 전기 전도성이 우수해 "꿈의 신소재"로 불린다. 일반적으로 전자현미경은 광학현미경보다 수천배의 배율을 가지고 있어 원자 단위까지 관찰이 가능하지만 고체상태의 시료만 관찰이 가능했다. 전자와 공기가 만나 산란하는 현상을 방지하기 위해 전자현미경 내의 전자빔이 지나가는 길이 모두 진공으로 유지되는데, 액체 시료는 진공 속에서 모두 증발해 관찰이 불가능하기 때문이다. 하지만 나노재료 제조, 전기화학·촉매 반응, 인체·동식물 세포 속의 반응과 같은 수많은 반응들은 액체 내에서 일어나거나 액체를 포함한 반응들이다. 따라서 이번 이 교수가 개발한 기술은 액체 내에서 일어나는 과정을 원자 규모로 관찰할 수 있는 길을 열어준 셈이다. 이 교수의 연구 성과는 지난해 4월 학술지 사이언스(Science)에 게재됐으며, 사이언스지의 "디스 위크(This week)", "전망(Perspectives)", 네이처지의 "주목받는 연구(Research Highlights)"에도 소개되었고, BBC 등 유명 해외 언론매체에도 보도된 바 있다. 이와 함께 그는 지난 20여 년간 미세구조에서 나타나는 현상들을 원자단위에서 규명하는 연구를 통해 과학인용색인(SCI) 등재 국제학술지에 450여편의 논문을 게재해왔으며 7편의 저서를 편찬하는 등 활발한 연구 업적을 보이고 있다. 현재까지 발표한 다수 논문들은 사이언스, 나노 레터스(Nano Letters), 첨단기능재료들(Advanced Functional Materials)와 같은 권위 있는 학술지에 실려 지금까지 총 피인용 횟수 3600회 이상, 31회 이상 피인용된 논문이 31편에 달하는 등 업적을 쌓았다. 이 밖에도 그는 이같은 공로를 인정받아 ▲2012년 한국세라믹학회의 학술상 ▲2012년 올해의 KAIST인상을 받는 영예를 얻었다. 이 교수는 "그동안 베일에 싸여있던 액체 내에서 일어나는 많은 과학 현상들을 원자단위로 규명해 우리의 생활을 더 편리하거나 이롭게 하는 데 최선을 다하겠다"고 수상소감을 말했다.
2013.02.06
조회수 15504
김은준 교수 포스코청암상 수상
김은준 교수 우리 학교 생명과학과 김은준 석좌교수가 "2013 포스코청암상" 수상자로 선정됐다. 김 교수는 뇌과학 분야에서 최대 관심사인 신경세포의 시냅스(synapse) 생성원리를 규명하고, 시냅스 단백질과 뇌신경 정신질환과의 관련성 연구를 선도하고 있는 세계적인 과학자다. 김 교수는 2005년 하버드대 연구원 시절 시냅스를 구성하는 특정 단백질(PSD-95)을 최초로 발견해 세계적 학술지인 "네이처"에 발표했다. 이후에도 20여 개의 시냅스 단백질을 추가로 발견해 뇌 과학 분야 권위자로 주목을 받았다. 한편 포스코청암상시상식은 내달 27일 오후 6시 포스코센터 1층 아트리움에서 열린다. 부문별로 수상자에게 상금 2억원을 각각 수여한다.
2013.02.05
조회수 12500
이산화탄소 포집 효율을 획기적으로 향상시킨 물질 개발
- 질소대비 CO2 선택성 300배 증가, 네이처 커뮤니케이션즈 게재 - 우리 학교 WS 대학원의 자페르 야부즈 교수, 알리 조스쿤 교수, 정유성 교수 공동연구팀이 질소대비 이산화탄소 선택성을 300배 높인 세계 최고 수준의 CO2흡수제를 개발했다. 최근 전 세계적으로 기후변화 대응을 위한 현실적 대안으로 이산화탄소를 포집하여 저장․처리하는 CCS*기술의 중요성이 부각되고 있다. * CCS : Carbon Capture and sequestration 현재 이산화탄소를 포집하는 기술로는 액상흡수제를 이용한 습식포집기술, 고체 흡수제를 이용한 건식포집기술, 필름과 같은 얇은 막을 이용하는 분리막 포집기술이 있다. 발전소, 제철소와 같이 이산화탄소 대량 배출원에 적용하게 되는 동 기술은 고온과 다량의 수분이 존재하는 극한조건하에서도 포집효율이 낮아지지 않는 것이 연구개발의 핵심과제이다. 기존에 연구되었던 건식흡수제인 MOF(Metal Organic Framework)나 제올라이트의 경우는 수분 조건에서 불안정하거나 합성이 비싸다는 단점이 존재하였다. 연구팀이 이번에 개발한 흡수제는 건식흡수제로서 ‘아조-코프(Azo-COP)’라고 명명하였는데 값비싼 촉매 없이도 합성이 가능하여 제조비용이 매우 저렴하며, 고온 및 수분 조건에서도 안정한 특성을 나타내었다. 코프(COP)는 간단한 유기분자들을 다공성 고분자형태로 결합시킨 구조체로 동 연구팀이 처음으로 개발한 건식 이산화탄소포집물질이다. 연구팀은 이물질에 ‘아조(Azo)’라는 기능기를 추가로 도입함으로써 질소를 배제하고 혼합기체 중에서 이산화탄소만을 선택적으로 포집하도록 하였다. ‘아조(Azo)"기를 포함하는 아조-코프(Azo-COP)는 일반적 합성방법을 통해 쉽게 제조하였으며, 값비싼 촉매대신 물과 아세톤 등의 용매를 사용해 불순물도 쉽게 제거함으로써 제조비용을 대폭 낮출 수 있었다. 특히, 아조-코프(Azo-COP)는 이산화탄소와 화학적 결합이 아닌 약한 인력을 통해 결합함으로써 흡착제 재생 에너지 비용을 혁신적으로 낮출 수 있으며, 350℃ 정도의 극한 조건에서도 안정해 이산화탄소 포집제로서 활용은 물론 더욱 가혹한 환경의 다양한 분야에서 포집 물질로 활용될 것으로 기대된다. 해당성과는 교과부 산하 (재)한국이산화탄소포집및처리연구개발센터(센터장 박상도) 및 KAIST EEWS 기획단의 지원으로 이루어졌다. 자페르 야부즈 교수와 알리 조스쿤 교수는“Azo-COP를 CO2, N2 분리 실험에 적용한 결과 포집 효율이 수백배 향상됐다”며 “이 물질은 촉매가 필요 없고, 수분 안정성, 구조 다양성 등 우수한 화학적 특성으로 인해 앞으로 이산화탄소 포집을 비롯한 많은 분야에 활용될 것으로 기대한다”고 밝혔다. 한편, 이번 연구 결과는 세계적 학술지인 ‘네이처’ 자매지 ‘네이처 커뮤니케이션즈’ 1월 15일자로 게재됐다.
2013.02.01
조회수 18857
이정호 교수, 아산의학상 젊은 의학자 부문상 수상
우리 학교 의과학대학원 이정호 교수가 제6회 아산의학상 젊은 의학자 부문상을 수상했다. 이 교수에게는 상패와 상금 5000만원이 주어진다. 이정호 교수는 뇌 발달 장애의 발병 메커니즘을 규명하는 연구 활동을 수행해왔다. 이를 통해 세계적인 학술지에 연구 성과들을 발표해 차세대 의학자로 주목받고 있다. 이 교수는 차세대 염기서열분석법을 이용해 국소 대뇌 피질 발달 장애를 일으키는 돌연변이를 발견해 소아 난치성 뇌전증 치료를 위한 새로운 장을 마련했다. 국소 대뇌 피질 발달 장애는 소아 난치성 뇌전증의 가장 흔한 원인으로 알려져 있다. 이 연구결과는 지난 2012년 6월 유전학 분야의 세계 최고 권위 학술지 "네이처 지네틱스(Nature Genetics)"에 게재됐다. 아산의학상은 정몽준 아산사회복지재단 이사장이 인류의 건강증진을 위해 기초의학 및 임상의학 분야에서 뛰어난 업적을 이룬 국내 의과학자를 격려하기 위해 지난 2007년 제정했다. 아산재단은 지난해 6월부터 심사위원회를 구성해 심사를 진행했으며, 연구의 일관성과 독창성, 해당 연구 분야의 국내외 영향력, 의학발전 기여도, 후진 양성 등 종합적인 평가를 거쳐 제6회 아산의학상 수상자를 선정했다. 시상식은 오는 3월 21일 오후 6시 용산구 한남동 그랜드 하얏트 호텔 그랜드볼룸에서 열린다.
2013.01.21
조회수 13759
합성 조절 RNA를 이용한 세포공장 기술 개발
- 네이쳐 바이오테크놀로지 온라인판 게재.“화학 산업을 대체할 생물 산업 발전의 새로운 전략으로 기대” - 우리 학교 생명화학공학과 이상엽 특훈교수팀이 합성 조절 RNA 기술을 활용하여 세포공장*을 효율적이고 대규모로 구현하게 하는 새로운 기술을 개발했다. * 세포공장(Biofactory) : 세포의 유전자를 조작하여 원하는 화합물을 대량으로 생산하도록 만드는 미생물 기반의 생산 시스템 화석연료 고갈과 석유화학제품 사용에 의한 환경오염 등 인류가 직면한 문제를 해결하기 위해 친환경적이고 지속가능한 바이오산업이 대두되고 있으며 특히 바이오에너지, 의약품, 친환경 소재 등을 생산할 수 있는 세포공장 개발기술이 전 세계적으로 주목받고 있다. 우수한 세포공장 개발을 위해서는 원하는 화합물을 생산하는 유전자 선별과 높은 생산 효율의 미생물을 찾는 과정이 병행되어야 하나 기존의 연구방식은 미생물의 유전자를 하나씩 조작하여 복잡하고 많은 시간이 소요되는 문제가 있었다. 우리 학교 나도균 박사와 유승민 박사가 참여한 이상엽 특훈교수 연구팀은 위와 같은 기술적 한계를 극복하기 위해 합성 조절 RNA를 제작하고 이를 활용하는 새로운 기술을 개발하였다. 특히 합성 조절 RNA를 이용한 이 기술은 기존 방식과 달리 균주 특이성이 없어 수개월이 소요되던 실험을 수일로 단축시킬 수 있어 획기적이다. 연구팀은 합성 조절 RNA 기술을 활용하여 의약 화합물의 전구체로 사용되는 타이로신(tyrosine)*과 다양한 석유화학 제품에 활용되는 카다베린(cadaverine)** 생산에 도입하여 세계 최고의 수율로 생산(각 21.9g/L, 12.6g/L)하는 세포공장을 개발하는데 성공하였다. * 타이로신(tyrosine) : 스트레스를 다스리고 집중력 향상 효과가 있는 아미노산 ** 카다베린(cadaverine) : 폴리우레탄 등 다양한 석유화학 제품에 활용되는 기반물질 이상엽 교수는 “합성 조절 RNA기술로 다양한 물질을 생산하는 세포공장 개발이 활발해 질 것이며 석유에너지로 대표되는 화학 산업이 바이오 산업으로 변해 가는데 촉매제 역할을 할 것으로 기대된다”라고 연구 의의를 밝혔다.“ 이번 연구는 글로벌프론티어사업(지능형 바이오 시스템 설계 및 합성 연구단(단장 김선창))의 지원으로 수행되었으며 연구결과는 세계적 학술지인 네이처 바이오테크놀로지 온라인 판에 1월 20일 게재되었다.
2013.01.21
조회수 17231
연성물질의 메조포러스 준결정 개발・분석 성공
오사무 테라사키 교수 - 네이처(Nature)지 7월 19일자 실려 - 메조포러스(mesoporous) 준결정(quaicrystal) 구조에 대한 의문이 우리 대학 연구진에 의해 보다 명확하게 풀렸다. 우리 학교 EEWS(책임교수 강정구) 대학원 소속 오사무 테라사키(Osamu Terasaki) 교수 연구팀이 불규칙적인 입자구조를 가지고 있는 준결정 메조포러스 실리카(quasicrystalline mesoporous silica) 합성에 성공하고 준결정 성장 과정을 분석하는 새로운 방법을 개발했다. 연구팀이 제시한 이론은 연성물질인 교질(micelles) 입자 형성 시 불규칙하게 나타나는 준결정 현상을 과학적으로 규명하는 토대를 만들었다. 세계적인 학술지 ‘네이처(Nature)’는 7월호(19일자)에 테라사키(Terasaki) 교수 연구팀의 논문을 게재했다. 과학자들은 그 동안 연성물질(solidified version of soft matter systems)에서 발견되는 메조포러스 준결정 구조를 체계적으로 설명하는데 많은 어려움을 겪어왔다. 하지만, 이번 연구를 통해 얻은 연성물질 내 준결정 성장에 대한 이론적인 근거는 앞으로 이 분야에 대한 연구를 촉진시켜 나노 구조를 가진 신소재 물질 개발에 박차를 가할 것으로 예측된다. 연성물질의 메조포러스 준결정은 높은 대칭균형(high symmetry)과 나노 스케일(nano scale)보다 더 큰 특성적 크기(large characteristic length scale)를 가지고 있어 광학적 특성을 자유자재로 조절할 수 있는 물질을 구현할 수 있다. 이를 활용하면 태양광을 사용하는 친환경적 에너지 저장 및 변환 기술 개발에 응용되어 지속가능한 에너지의 저장, 사용 및 재생산 기술 발전에 큰 도움을 줄 것으로 예상된다. 테라사키 교수 연구팀은 메조포러스 준결정 실리카 합성에 성공하고 투과전자현미경(Transmission Electron Microscopy)을 통해 실리카 입자 중앙에 12각형 기둥 모양의 순결정이 형성되어 있으며, 전자회절 무늬에서(electron diffraction pattern) 12각형의 회전대칭 무늬(rotational symmetry)가 순결정 주위에 형성되는 것을 증명하였다. 준결정(quasicrystal)은 준주기적 결정(quasiperiodic crystal)의 줄임말로서 금속 같은 일정한 규칙으로 배열된 결정 물질과 유리와 같은 비결정 물질의 중간 성질을 가지는 제 3의 고체(solid)로 최근 발견되었으며 2011년에는 노벨화학상이 이 분야 연구에 수여되기도 했다. 많은 양의 기공(porous)을 지닌 다공성 물질을 준결정으로 제조 하게 되면 기공들의 결정 구조를 ‘타일을 붙이듯(tiling)’ 원하는 방식대로 디자인 하고 성질을 조절하게 되어 다양한 분야에 필요한 새로운 소재를 개발하고 생산할 수 있게 된다. 테라사키 교수는 “높은 대칭성(high symmetry)을 가지는 준결정의 발견은 물질의 광학적 성질을 쉽게 조절해 가시광 영역대의 포토닉 크리스탈을 구현할 수 있다”며 “물질의 광학적 에너지 흡수를 조절 할 수 있는 이 기술은 향후 에너지 저장(energy harvesting)의 핵심기술이 될 수도 있을 것이다”라고 말했다. 이번 연구는 KAIST EEWS 대학원의 오사무 테라사키 교수와 스웨덴 스톡홀름(Stockholm University) 대학과 공동으로 수행되었다.(끝) 그림 1. 물질에서의 원자 배열 방법에 따라 구분되는 결정, 준결정과 비결정을 나타낸 모식도. 일반적으로는 원자가 일정한 패턴을 가지고 배열되어 있는 것을 결정, 그렇지 않은 것을 비결정이라고 하였으나, 준결정은 결정에서의 원자배열을 가지지는 않지만 정돈 되어 있는 구조이다. 투과전자현미경에서의 회절무늬를 보고 준결정을 판단할 수 있다. 그림 2. 메조포러스 실리카 준결정의 실제 모양과 원자 배열을 나타내는 투과전자현미경 이미지. 투과전자현미경으로부터 메조포러스 실리카가 12각형 기둥 모양을 하고 있음을 알 수 있으며(왼쪽 위의 이미지), 이는 투과전자현미경의 회절무늬에서도 나타난다(왼쪽 아래 이미지). 고배율의 투과전자현미경은 메조포러스 실리카의 실제 구조를 나타내고 있다(오른쪽). 그림 3. 메조포러스 실리카 준결정의 결정구조를 3차원 모델로 나타낸 모식도. 각각 다른 세 가지 다각형이 서로 정돈되어 결합해 메조포러스 준결정을 구성한다.
2012.07.24
조회수 20675
세계 최고 수준의 초신축성 전극소재 개발
- 정렬된 3차원 다공성 나노구조를 이용한 새로운 개념을 도입해 네이처 커뮤니케이션스(Nature Communications)지 6월호 실려 - 돌돌 말리는 전자책이나 유연한 디스플레이, 옷처럼 입을 수 있는 컴퓨터 등 차세대 전자 소자를 구현하는 핵심 부품인 유연한 신축성 전극을 국내 연구진이 개발했다. 우리 학교 신소재공학과 전석우 교수 연구팀이 정렬된 3차원 다공성 나노구조를 이용하여 세계 최고 수준의 초신축성 소재를 개발하는데 성공했다. 이번 연구 결과는 세계 최고 권위의 과학전문지 네이처(Nature)의 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)"지 6월 26일자 온라인판에 리서치 하이라이트로 공개됐다. 특히 이번 연구결과는 국내 연구진이 주축이 되어 일궈낸 값진 세계적인 성과로써 큰 의미가 있다. 전석우 교수팀은 연구팀이 보유한 세계 최대 면적의 3차원 나노 패터닝 기술을 이용하여 1인치 이상의 면적에 머리카락 굵기의 1/10에 해당하는 10마이크로미터의 두께를 가지는 정렬된 3차원 나노기공 구조를 제작했다. 연구팀은 제작된 나노기공 구조를 주형으로 활용하여 기공에 탄성중합체를 침투시킨 후에 주형을 제거하는 방법으로 역상의 3차원 신축성 나노소재를 제작하였고, 이 소재 내부에 액상의 전도성 물질을 침투시켜 초신축성 유연 전극을 개발하였다. 이렇게 개발한 전극을 200% 이상 늘어난 상태에서도 전기전도도의 저하 없이 발광다이오드(LED) 램프를 켤 수 있다. 기존에는 소재에 주름을 잡아 아코디언처럼 늘였다 줄였다 할 수 있게 만들거나 평면에 그물처럼 구멍을 뚫어서 신축성을 향상하는 방법을 사용했다. 하지만 이러한 방식은 신축성 향상이 제한적인데다 100%만 늘어나도 전기 전도도가 크게 저하되는 단점이 있었다. 전석우 교수는 “차세대 전자소자인 유연소자 개발에서 세계 최고 수준의 신축성 전극을 국내 기술로 개발함으로써 시장우위를 선점할 수 있을 것”이라고 말했다. 한편, 이번 연구는 KAIST 신소재공학과 전석우 교수(교신저자)의 지도아래 박준용 박사과정(제 1저자)이 주도적으로 진행하였고, KAIST 신소재공학과 김도경 교수, 미국 노스웨스턴대 후앙 교수, 미국 일리노이대 로저스 교수가 공동으로 참여했다. 그림 1. A는 3차원 나노패터닝 기술을 통해 제작된 다공성 고분자 주형. B는 A의 주사전자현미경(SEM) 이미지. C는 탄성중합체 침투 및 고분자 주형 제거를 통해 제작된 초신축성 3차원 소재. 그림 2. A는 3차원 초신축성 소재를 전극으로 이용하여 발광다이오드(LED) 소자를 구현하는 개념도이다. B는 220%까지 늘어난 후에도 밝기의 변화 없이 성공적으로 구동된 신축성 전자 소자이다. 그림 3. 이번 연구로 개발된 신소재의 개념도로써, 소재에 잡아당기는 힘이 작용했을 때 정렬된 3차원 나노기공 구조를 통하여 소재가 효과적으로 신축되는 모습을 형상화한 이미지이다.
2012.07.11
조회수 17857
정희태 교수, 이달의 과학자 상 수상
우리학교 생명화학공학과 정희태 석좌교수가 교육과학기술부ㆍ한국연구재단ㆍ서울경제신문이 공동 주관하는 ‘이달의 과학기술자상’ 7월 수상자로 선정됐다. 정 교수는 전기 전도성이 우수해 ‘꿈의 신소재’로 불리는 그래핀(graphene)의 결정면 크기와 모양을 더 넓게 관찰해 간편히 시각화할 수 있는 기술을 개발, 양질의 그래핀을 만드는데 기여했다. 그래핀은 흑연에서 떼어낸 2차원 평면의 탄소 나노 구조체를 말한다. 이런 단결정 물질을 제조공정으로 넓게 제작하면 그래핀이 다결정성을 띄며 영향을 받아 전기적ㆍ기계적 특성이 낮아지는 문제가 있었다. 정 교수는 그래핀 결정면의 크기와 경계를 쉽고 빠르게 관찰하는 기술로 우수한 특성을 갖는 그래핀 제조를 가능케 했다. 이 원천기술은 그래핀을 이용한 투명전극, 유연한 디스플레이, 태양전지 등의 연구에 응용되고 있다. 이 연구성과는 올해 1월 세계 최고 권위의 과학전문지 네이처의 자매지 ‘네이처 나노테크놀러지(Nature Nanotechnology)’에 실렸다. 정 교수는 나노 재료와 공정을 이용한 광전자소자 응용분야의 세계적인 석학으로 지난 10년간 과학인용색인(SCI) 등재 국제학술지에 120편의 논문을 게재했고, 40여개의 국내외 특허를 출원했다. 지금까지 피인용 횟수는 총 2,500여회에 달한다.
2012.07.04
조회수 13905
중국인 박사부부, 상하이 교통대 부교수로 동시 임용
- 이상엽 특훈교수 제자 부부, 5월과 9월에 잇따라 임용돼 - 우리 학교 생명화학공학과의 같은 연구실에서 박사학위를 받은 중국인 박사부부가 중국 명문 상하이 교통대 교수로 나란히 임용돼 눈길을 끌고 있다. 주인공은 생명화학공학과 시사샤오 시아(Xia, Xiao Xia) 박사와 지강취안(Qian, Zhi Gang) 박사. 그동안 KAIST출신 박사부부가 해외 유명 대학의 교수로 임용되는 경우는 있었으나, 같은 연구실에서 공부하던 박사부부가 해외에 있는 같은 대학 교수로 동시에 임용되기는 이번이 처음이다. 중국에서 학사, 석사과정을 마친 이들 부부는 동중국과학기술대학 석사과정 때 만나 사랑을 키워온 것으로 알려졌다. 이후 2005년 1학기에 부인이 먼저, 그리고 2학기에 남편이 뒤이어 KAIST 생명화학공학과 박사과정에 입학해 이상엽 특훈교수의 지도를 받았고 2009년 동시에 박사학위를 따냈다. 지도교수인 이상엽 특훈교수는 4년간 이국땅의 같은 연구실에서 밤낮없이 연구하면서 궁금한 것은 물어보고, 고민이 있으면 서로 나누면서 서로 의지해 나아가는 모습이 보기 좋았고 연구도 열심히 해 외국인 학생이지만 별다른 걱정을 할 필요가 없었다고 전했다. 이들 부부는 어느 한 쪽 손색이 없을 정도로 뛰어난 연구 역량을 펼쳤다. 남편인 취안 박사는 엔지니어링 플라스틱인 나일론의 원료인 푸트레신을 대장균의 대사공학을 통해 효율적인 생산을 하는 기술을 세계 최초로 개발해 박사학위를 받았다. 연구결과는 바이오테크놀로지 바이오엔지니어링지에 게재됐고, 네이처지에 하이라이트 되기도 했다. 취안박사는 지난 2일 상하이 교통대 생명과학및생명공학과에 부교수로 부임했다. 부인인 시아 박사는 ‘강철보다 강한 초고분자량의 거미실크 단백질 생산을 위한 대사공학 연구’로 박사학위를 받았다. 연구결과는 미국학술원회보에 게재됐고 네이처화학생물지에서 하이라이트 됐다. 시아박사는 오는 9월 상하이 교통대학 바이오공학과의 특훈부교수로 부임할 예정이다. 취안 박사는 “고향과는 멀리 떨어져 있지만 부인과 서로 의지하면서 어려움을 슬기롭게 극복해 마음껏 연구를 할 수 있었다”며 “KAIST에서 배운 선진기술을 후학들에게 전해 중국의 생명화공분야 발전에 기여하고 싶다“고 말했다. 이상엽 특훈교수는 “상하이 교통대학은 칭화대, 베이징대와 함께 중국 3대 명문대학으로, KAIST에서 수학하는 동안 탁월한 능력을 발휘해 부부가 매우 이례적으로 동시에 교수로 임용됐다”며 “한국에서 공부하는 많은 중국인 유학생들에게 모범이 될 것”이라고 말했다. 왼쪽부터 시아박사, 취안박사 부부, 지도교수인 이상엽특훈교수
2012.05.10
조회수 15863
고화질 초고속 차세대 디스플레이 개발 가능성 열어
- 세계 최고 ‘네이처’ 자매지 발표,“투명전극 나노패턴을 이용한 무배향막 액정 배향”- 기존의 LCD(액정디스플레이)와는 달리 고분자 배향막*이 필요 없는 신개념 LCD기술이 국내 연구진에 의해 개발되어, 더욱 얇으면서 화질이 뛰어나고 속도도 빠른 차세대 디스플레이 개발에 새로운 가능성을 열었다. ※ 고분자 배향막 : 액정 배향(配向)을 위해 투명전극위에 도포하는 얇은 고분자 필름 우리 학교 생명화학공학과 정희태 석좌교수 가 주도하고 정현수, 전환진 박사과정생(공동1저자), 한국화학연구원 김윤호 박사와 전북대학교 강신웅 교수(공동 교신저자) 연구팀이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 세계 최고 권위의 학술지인 ‘네이처’의 자매지 ‘Nature Asia Materials(NPG Asia Materials)’ 온라인 속보(2월 17일)에 게재되었다. 평판 디스플레이 산업은 21세기 정보화 산업을 주도하는 핵심 산업으로 LCD를 중심으로 활발히 연구되고 있고, 특히 우리나라가 세계시장의 50%이상을 점유하고 있는 세계선도 산업 중 하나이다. LCD에는 전기광학소자로서 액정을 구동시키기 위해 여러 기술이 집약되는데, 특히 표시 소자*의 품질과 기능을 좌우하는 가장 기본적이면서 핵심적인 기술은 LCD를 구동하기 위해 사용하는 액정(Liquid Crystal)을 한쪽 방향으로 정렬하는 액정배향기술이다. ※ 표시 소자(indicating element) : 부호나 문자, 도형, 화상 등 또는 그 조합된 정보를 입력에 대응하여 표시하기 위한 소자현재 모든 LCD 제품의 액정배향기술은 얇은 고분자 필름 표면에 일정한 방향으로 기계적으로 홈을 파고 그 홈을 따라 액정 물질을 배향시키는 기법을 적용하고 있다. 그러나 고분자 배향막은 고분자 설계․합성부터 후처리까지 많은 시간과 비용이 소비되고, 고분자 안정화를 위한 고온공정은 자유롭게 기판을 선택할 수 없게 하여 자유자재로 휘어지는(flexible) 디스플레이와 같은 차세대 디스플레이에 활용하기 힘든 기술적 한계가 있었다. 정희태 교수 연구팀은 고분자 배향막 없이 LCD에 사용되는 투명한 전극용 유리막(ITO)만을 이용해 액정을 배향시키는 무배향막(배향막이 필요 없는) 기술을 개발하는데 성공하였다. 정 교수팀의 원천기술인 신개념 방식의 패턴기법을 전극용 유리막에 적용하여 높은 분해능(20nm)과 높은 종횡비를 갖는 패턴을 형성한 후에도 투명전극의 고유 성질인 전도도와 투과도가 변함없이 유지되어, 배향막과 투명전극의 기능을 동시에 수행할 수 있음이 확인되었다. 연구팀이 개발한 기술은 고분자 배향막 없이 투명전극 패턴만을 이용하여 액정의 수평(혹은 수직) 배향 모두 가능하다. 따라서 제조공정이 기존의 배향막 공정시간만큼 단축되었을 뿐만 아니라, 현재 사용하고 있는 LCD보다 수 마이크로미터에서 센티미터까지 더욱 얇게 LCD를 만들 수 있다. 또한 현재 LCD보다 더욱 낮은 구동전압과 빠른 응답속도 등의 특성을 보여 배터리 수명도 길고 화질이 좋으면서 속도도 빠른, 고화질 초고속 화면 디스플레이 개발에 가능성을 열었다. 아울러 이 기술은 어떠한 기판에도 적용할 수 있고, 나노미터 단위로 미세조절이 가능해 액정 기반의 플렉시블 및 멀티도메인 모드와 같은 차세대 디스플레이에도 적용할 수 있는 기술로 평가 된다. 또한 연구팀이 개발한 투명전극 패턴기술은 디스플레이 분야뿐만 아니라 투명전극 기판이 쓰이는 터치패널 분야에도 활용될 수 있어 민감도가 크게 향상된 터치패널도 만들 수 있게 된다. 정희태 석좌교수는 “LCD에 꼭 필요한 고분자 배향막을 대체하기 위한 기술은 학계와 산업계의 숙원이었는데, 이번에 개발한 기술은 고분자 배향막이 필요 없고, LCD에 사용했던 기판을 그대로 활용하여 구동할 수 있다는 점에서 산업적 의의가 매우 크다. 또한 이 기술을 스마트폰과 태블릿 PC에 적용하면, 기존 제품보다 터치패널의 민감도를 크게 향상시킬 수 있는 등 미래 전자제품 원천기술로서 다각적으로 활용될 것으로 기대한다”고 연구의의를 밝혔다. (좌) 초고분해능(폭 20nm, 높이 200nm)과 고종횡비를 가지는 ITO 패턴의 모습 (우) ITO 패턴 (노란 점선)만을 이용한 액정 배향 편광현미경 사진 (사진설명) 장성우 연구원, 전환진 연구원, 이은형 연구원(왼쪽부터)이 ITO 패턴 제작을 위한 ion-bombardment 공정장비의 상태를 점검하고 있다.
2012.02.27
조회수 21874
꿈의 신소재
우리 학교 나노과학기술대학원 김용현 교수 연구팀과 인하대 물리화학부 박성진 교수 연구팀이 공동 참여한 나노그래핀의 화학구조 규명에 관한 논문이 네이처 커뮤니케이션스(Nature Communications) 2012년 1월호에 게재됐다. 국제적 권위지인 네이처(Nature)의 과학분야 자매지인 네이처 커뮤니케이션스에 게재된 논문은 분광학적인 방법을 사용해 나노그래핀 소재의 자세한 화학구조와 생성원리, 전기적 특성을 획기적으로 향상시킬 수 있는 분자단위가 나노그래핀 내에 존재함을 규명했다. 두 대학 공동연구팀은 이번 연구결과를 통해 나노그래핀의 구조와 특성을 근본적으로 이해할 수 있게 됐으며 배터리, 초고용량 축전지, 투명전극, 초경량 고강도 복합재료 등에 나노그래핀 소재를 이용할 수 있는 새로운 가능성을 열게 됐다고 평가했다. 나노그래핀 소재는 여러 응용 분야에 적용되고 있음에도 불구, 현재까지 자세한 분자구조와 생성원리, 전기적 특성의 원인 등이 규명되지 않아 성능 개선과 응용 목적에 맞춘 소재의 변형이 불가능했다.
2012.01.25
조회수 12188
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 20