본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B7%B8%EB%9E%98%ED%95%80%28graphene%29
최신순
조회순
이정용 교수, 이달의 과학기술자상 수상
이정용 교수 액체 내의 수많은 반응 메카니즘을 규명할 수 있는 기술을 개발한 우리 학교 신소재공학과 이정용 교수가 "이달의 과학기술자상" 2월 수상자로 선정됐다. 이 교수는 세계 최초로 액체 시료를 그래핀(graphene)에 밀봉하는 기술을 개발해 액체 내에서 나노입자가 성장하는 과정을 원자 단위에서 실시간으로 관찰하는 데 성공한 공로를 인정받았다. 그래핀이란 탄소 원자가 벌집 모양의 육각형 형태로 연결된 2차원 평면 구조를 이루는 물질로 구리보다 100배 이상 전기 전도성이 우수해 "꿈의 신소재"로 불린다. 일반적으로 전자현미경은 광학현미경보다 수천배의 배율을 가지고 있어 원자 단위까지 관찰이 가능하지만 고체상태의 시료만 관찰이 가능했다. 전자와 공기가 만나 산란하는 현상을 방지하기 위해 전자현미경 내의 전자빔이 지나가는 길이 모두 진공으로 유지되는데, 액체 시료는 진공 속에서 모두 증발해 관찰이 불가능하기 때문이다. 하지만 나노재료 제조, 전기화학·촉매 반응, 인체·동식물 세포 속의 반응과 같은 수많은 반응들은 액체 내에서 일어나거나 액체를 포함한 반응들이다. 따라서 이번 이 교수가 개발한 기술은 액체 내에서 일어나는 과정을 원자 규모로 관찰할 수 있는 길을 열어준 셈이다. 이 교수의 연구 성과는 지난해 4월 학술지 사이언스(Science)에 게재됐으며, 사이언스지의 "디스 위크(This week)", "전망(Perspectives)", 네이처지의 "주목받는 연구(Research Highlights)"에도 소개되었고, BBC 등 유명 해외 언론매체에도 보도된 바 있다. 이와 함께 그는 지난 20여 년간 미세구조에서 나타나는 현상들을 원자단위에서 규명하는 연구를 통해 과학인용색인(SCI) 등재 국제학술지에 450여편의 논문을 게재해왔으며 7편의 저서를 편찬하는 등 활발한 연구 업적을 보이고 있다. 현재까지 발표한 다수 논문들은 사이언스, 나노 레터스(Nano Letters), 첨단기능재료들(Advanced Functional Materials)와 같은 권위 있는 학술지에 실려 지금까지 총 피인용 횟수 3600회 이상, 31회 이상 피인용된 논문이 31편에 달하는 등 업적을 쌓았다. 이 밖에도 그는 이같은 공로를 인정받아 ▲2012년 한국세라믹학회의 학술상 ▲2012년 올해의 KAIST인상을 받는 영예를 얻었다. 이 교수는 "그동안 베일에 싸여있던 액체 내에서 일어나는 많은 과학 현상들을 원자단위로 규명해 우리의 생활을 더 편리하거나 이롭게 하는 데 최선을 다하겠다"고 수상소감을 말했다.
2013.02.06
조회수 14944
장기주 교수, 불순물도핑없는 반도체나노선 양전하 생성원인규명
물리학과 장기주(張基柱, 56) 교수팀이 게르마늄-실리콘 나노선에서 불순물 도핑 없이도 양전하가 생성되는 원인을 최근 규명했다. 이 연구는 KAIST 박지상, 류병기 연구원, 연세대 문창연 박사와 함께 나노미터(nm=10억분의 1m)단위의 직경을 가진 코어-쉘(core-shell) 구조의 게르마늄-실리콘 나노선의 전기전도 특성을 조사해 이뤄졌다. 이번 연구결과는 나노과학기술 분야 최고 권위지인 ‘나노 레터스(Nano Letters)" 온라인판에 게르마늄-실리콘 코어-쉘 나노선의 양전하 정공 가스를 일으키는 결함(Defects Responsible for the Hole Gas in Ge/Si Core−Shell Nanowires)라는 제목으로 지난 17일 게재됐다. 반도체 기술이 소형화의 한계에 직면하면서 탄소나노튜브, 그래핀(graphene), 반도체 나노선 등 나노 소재를 이용한 새로운 반도체 소자 연구가 널리 수행되고 있다. 특히 실리콘 및 게르마늄 나노선은 기존 반도체 기술과 접목이 가능하기 때문에 큰 기대를 모으고 있다. 반도체 나노선의 소자 응용은 불순물을 첨가하여 양전하 혹은 음전하를 띤 정공(hole)이나 전자 운반자를 만들어 전류가 흐를 수 있게 해야 한다. 그러나 나노선의 직경이 작아져 나노미터 수준이 되면 불순물 첨가가 어려워 전기전도의 조절이 매우 어려워진다. 이에 반해 게르마늄 나노선을 얇은 실리콘 껍질로 둘러싼 코어-쉘(core-shell) 구조를 갖는 나노선을 만들면 불순물을 도핑하지 않아도 게르마늄 코어에 정공이 만들어지고 전하 이동도는 크게 증가한다. 연구진은 제일원리 전자구조 계산을 통해 게르마늄 코어와 실리콘 쉘의 밴드구조가 어긋나 있고, 이러한 이유로 게르마늄 코어의 전자가 실리콘 쉘에 있는 표면 결함으로 전하 이동이 가능하여 코어에 양공이 생성됨을 최초로 규명했다. 또한 반도체 나노선을 만드는 과정에서 촉매로 쓰이는 금(Au) 원자들이 실리콘 쉘에 남아 게르마늄 코어의 전자를 빼앗는다는 사실도 처음 밝혔다. 張 교수는 “이번 연구 결과는 그동안 수수께끼로 남아있던 게르마늄-실리콘 나노선의 양전하 생성 원인과 산란과정을 거치지 않는 정공의 높은 전하 이동도에 대한 이론적 모델을 확립하고, 이를 토대로 불순물 도핑 없는 나노선의 소자 응용과 개발에 크게 기여할 것으로 기대된다.” 고 말했다. * 용어설명○ 제일원리 전자구조 계산 : 실험 데이터 없이 순전히 양자이론에 기초하여 물질의 전자구조와 물성을 기술하는 최고급(state-of-the-art) 전자구조 계산방법. (그림1) 실리콘 나노선 및 게르마늄-실리콘 코어-쉘 나노선의 원자구조. (그림2) 게르마늄-실리콘 코어-쉘 나노선의 전자의 상태밀도 분포.
2009.12.30
조회수 19809
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1