본문 바로가기 대메뉴 바로가기

연구

칩 스케일 초 저잡음 펄스 신호 발생기술 개발​
조회수 : 23501 등록일 : 2020-09-17 작성자 : 홍보실

(왼쪽부터) 물리학과 이한석 교수, 기계공학과 김정원 교수

< (왼쪽부터) 물리학과 이한석 교수, 기계공학과 김정원 교수 >

우리 대학 물리학과 이한석 교수와 기계공학과 김정원 교수 공동연구팀이 실리카 *마이크로공진기를 이용해 매우 낮은 잡음으로 펄스 신호를 주기적으로 발생할 수 있는 신기술을 개발했다고 17일 밝혔다.

마이크로공진기(microresonator): 특정 공진 주파수에서 공진을 일으킬 수 있도록 한 마이크로미터~밀리미터 크기의 소자이다. 굴절률 차이에 의한 내부전반사로 공진기 내부에서 광 파워가 공진 형태로 집약되는 특성을 보인다. 

이 기술을 이용하면 3 밀리미터(mm) 지름의 칩으로부터 22 기가헤르츠(GHz)의 높은 *반복률2.6 펨토초(385조 분의 1)의 매우 낮은 *펄스 간 시간 오차를 동시에 가지는 광 펄스열(optical pulse train)을 발생할 수 있다. 따라서 초고속 광대역 아날로그-디지털 변환기(analog-to-digital converter, ADC)의 샘플링 클럭이나 5G·6G 통신용 초 저잡음 마이크로파 신호원으로 활용이 기대된다.

반복률(repetation rate): 단위 시간(1) 동안 지나가는 펄스의 수로 주기의 역수에 해당한다. 반복률이 22GHz일 경우, 펄스틑 1초 동안 220억 번 지나간다.

펄스 간 시간 오차(timing jitter): 펄스가 이상적인 주기로부터 얼마나 어긋나는지를 나타내는 값으로 펨토초 펄스 레이저의 중요한 특성 중 하나이며 일반적으로 레퍼런스 신호원과 비교하여 어긋나는 정도를 나타낸다. 

펨토초(1펨토초는 1,000조분의 1) 수준의 펄스 폭을 가지는 광 펄스를 생성하는 모드 잠금 레이저(mode-locked laser)는 광 주파수 빗 분광학(optical frequency comb spectroscopy, 2005년 노벨 물리학상)이나 펄스 확장 증폭 기술(chirped pulse amplification, 2018년 노벨 물리학상)과 같이 기초 과학 분야에서 매우 중요한 광원으로 활용되고 있다. 

최근에는 펨토초 펄스를 레이저 장비가 아닌 칩-스케일의 마이크로공진기 소자에서 생성하는 마이크로콤(micro-comb) 기술이 활발하게 연구되고 있다. 특히 기존의 모드 잠금 레이저가 100메가헤르츠(MHz) 정도의 반복률을 가진 것에 반해 마이크로콤은 기존보다 100배 이상인 수십 기가헤르츠(GHz) 이상의 높은 반복률을 가지기 때문에 다양한 ICT 시스템의 개발 및 제작 등에 폭넓게 적용될 것으로 기대되고 있다.

마이크로콤은 이론적으로는 1펨토초 수준의 매우 낮은 시간 오차를 가질 수 있을 것으로 예측됐지만, 기존에는 측정의 한계 때문에 이러한 성능을 정확하게 규명할 수 없었고 잡음 성능을 최적화할 수도 없었다.

공동연구팀의 이번 연구는 이한석 교수팀이 보유한 1억 이상의 매우 높은 *Q 인자를 갖는 온칩 마이크로공진기 제작기술과 김정원 교수팀이 보유한 100아토초(100아토초는 1경분의 1) 분해능의 펄스 간 타이밍 측정기술의 결합으로 가능했다.

Q 인자(Quality factor): 진동자나 공진기(resonator)가 얼마나 오랫동안 에너지(여기서는 빛)를 담아둘 수 있는지를 나타내며, 중심주파수에 따른 공진기의 대역폭을 특성 짓는 값이다. 공진기는 높은 Q 인자 값을 가질수록 더 오래 진동할 수 있으며, 외부로부터 주입되는 에너지를 내부에 더욱 고밀도로 집중시킬 수 있다. 반도체 미세공정기술을 기반으로 칩 상에 제작된 마이크로공진기는 높은 Q 인자를 갖는다고 하더라도 대략 1000만 정도의 값을 갖는 것이 일반적이다.

공동연구팀은 기존 연구보다 100배 이상 정밀한 타이밍 측정기술을 이용해 펄스 간 시간 오차를 정확하게 측정할 수 있었고, 그 결과를 이용해 마이크로공진기의 최적 동작 조건을 찾아냄으로써 마이크로콤의 잡음 성능을 획기적으로 높일 수 있었다.

공동연구팀 관계자는 이 신기술을 활용할 경우 다양한 온-칩 광신호처리 시스템의 구현이 가능하다고 내다봤다. 그는 특히 아날로그-디지털 변환기의 경우 샘플링 클럭의 지터 성능에 의해 제한되고 있는데, 이번 연구의 타이밍 성능은 22 기가헤르츠(GHz)의 샘플링 속도에서 12비트의 유효 비트 수(effective number of bits, ENOB)를 달성할 수 있어 기존 장비의 성능을 뛰어넘을 것으로 예상했다.

그림 1. 초고 Q-인사의 실리카 마이크로공진기를 이용한 매우 낮은 펄스간 시간 오차의 22-GHz 광 펄스열 생성 및 응용 분야들의 개요

< 그림 1. 초고 Q-인사의 실리카 마이크로공진기를 이용한 매우 낮은 펄스간 시간 오차의 22-GHz 광 펄스열 생성 및 응용 분야들의 개요 >

정동인 박사과정(앞), 권도현 박사과정(뒤)

< 정동인 박사과정(앞), 권도현 박사과정(뒤) >

이한석 교수는 "펄스 발생효율과 잡음 성능을 더욱 개선하기 위한 새로운 광소자 구성기법을 연구 중ˮ이라고 말했다. 아울러 김정원 교수도 "개발된 기술을 매우 낮은 위상잡음의 K-밴드 마이크로파 신호원과 초고속 아날로그-디지털 변환기용 샘플링 클럭으로 활용하는 후속연구를 진행 중ˮ이라고 밝혔다.

우리 대학 나노과학기술대학원 정동인 박사과정 학생과 기계공학과 권도현 박사과정 학생이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `옵티카(Optica)' 828에 게재됐다. (논문명: Ultralow jitter silica microcomb)

한편 이번 연구는 정보통신기획평가원 양자센서핵심원천사업과 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.

관련뉴스